Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T14:18:01.320Z Has data issue: false hasContentIssue false

Diatoms in Saline Lakes Paleoclimate and Paleoecology Interpretations

Published online by Cambridge University Press:  21 July 2017

Erik J. Ekdahl*
Affiliation:
VESTRA Resources, Inc. 5300 Aviation Drive Redding, CA 96002
Get access

Abstract

Average global temperatures are predicted to rise over the next century and changes in precipitation, humidity, and drought frequency will likely accompany this global warming. Understanding associated changes in continental precipitation and temperature patterns in response to global change is an important component of long-range environmental planning. For example, agricultural management plans that account for decreased precipitation over time will be less susceptible to the effects of drought through implementation of water conservation techniques.

A detailed understanding of environmental response to past climate change is key to understanding environmental changes associated with global climate change. To this end, diatoms are sensitive to a variety of limnologic parameters, including nutrient concentration, light availability, and the ionic concentration and composition of the waters that they live in (e.g. salinity). Diatoms from numerous environments have been used to reconstruct paleosalinity levels, which in turn have been used as a proxy records for regional and local paleoprecipitation. Long-term records of salinity or paleoprecipitation are valuable in reconstructing Quaternary paleoclimate, and are important in terms of developing mitigation strategies for future global climate change. High-resolution paleoclimate records are also important in groundtruthing global climate simulations, especially in regions where the consequences of global warming may be severe.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M. B., Binford, M. W., Brenner, M., and Kelts, K. R. 1997. A 3500 14C yr High-Resolution Record of Water-Level Changes in Lake Titicaca, Bolivia/Peru. Quaternary Research, 47:169180.Google Scholar
Baker, P. A., Fritz, S. C., Garland, J., and Ekdahl, E. 2005. Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru, and its relationship to North Atlantic climate variation. Journal of Quaternary Science, 20:655662.Google Scholar
Baker, P. A., Rigsby, C. A., Seltzer, G. O., Fritz, S. C., Lowenstein, T. K., Bacher, N. P., and Veliz, C. 2001A. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature, 409:698701.Google Scholar
Baker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R. B., Grove, M. J., Tapia, P. M., Cross, S. L., Rowe, H. D., and Broda, J. P. 2001B. The history of South American tropical precipitation for the past 25,000 years. Science, 291:640643.Google Scholar
Benson, L., Linsley, B., Smoot, J., Mensing, S., Lund, S., Stine, S., and Sarna-Wojcicki, A. 2003. Influence of the Pacific Decadal Oscillation on the climate of the Sierra Nevada, California and Nevada. Quaternary Research, 59:151159.Google Scholar
Birks, H. J. B. 1995. Quantitative paleoenvironmental reconstructions, p. 161254. In Maddy, D., and Brew, J.S. (eds.), Statistical modeling of Quaternary Science Data. Quaternary Research Association, Cambridge, England.Google Scholar
Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C., and Ter Braak, C. J. F. 1990. Diatoms and pH reconstruction. Philosophical Transactions, Royal Society of London, Series B, 327:263278.Google Scholar
Bloom, A. M., Moser, K. A., Porinchu, D. F., and Macdonald, G. M. 2003. Diatom-inference models for surface-water temperature and salinity developed from a 57-lake calibration set from the Sierra Nevada, California, USA. Journal of Paleolimnology, 29:235255.Google Scholar
Bond, , Kromer, G. B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. 1997. Persistent solar influence on North Atlantic climate during the Holocene. Science, 294:21302136.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. 2001. Persistent solar influence on North Atlantic Climate during the Holocene. Science, 294:21302136.Google Scholar
Bradley, , Vuille, R. S. M., Diaz, H. F., and Vergara, W. 2006. Threats to Water Supplies in the Tropical Andes. Science, 312:17551756.Google Scholar
Brown, K. J., Clark, J. S., Grimm, E. C., Donovan, J. J., Mueller, P. G., Hansen, C. S., and Stefanova, I. 2005. Fire cycles in North American interior grasslands and their relation to prairie drought. Proceedings of the National Academy of Sciences, 102:88658870.CrossRefGoogle ScholarPubMed
Chinn, T. 1993. Physical hydrology of the dry valley lakes, p. 151. In Green, W.J., and Friedmann, E.I. (eds), Physical and Biogeochemical Processes in Antarctic Lakes, Antarctic Research Series, 59. American Geophysical Union, Washington, D.C. Google Scholar
Clark, J. S., Grimm, E. C., Donovan, J. J., Fritz, S. C., Engstrom, D. R., and Almendinger, J. E. 2002. Drought cycles and landscape responses to past aridity on prairies of the Northern Great Plains. Ecology, 83:595601.Google Scholar
Clemens, S. C. 2005. Millennial-band climate spectrum resolved and linked to centennial-scale solar cycles. Quaternary Science Reviews, 24:521531.Google Scholar
Cross, S. L., Baker, P. A., Seltzer, G. O., Fritz, S. C., and Dunbar, R. B. 2000. A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. The Holocene, 10:2132.Google Scholar
Cumming, B. F., and Smol, J. P. 1993. Development of diatom-based salinity models for paleoclimatic research from lakes in British Columbia (Canada). Hydrobiologia, 269/270:179–96.Google Scholar
Cumming, B. F., Wilson, S. E., Hall, R. I., and Smol, J. P. 1995. Diatoms from British Columbia (Canada) Lakes and Their Relationship to Salinity, Nutrients, and other Limnological Variables. Koeltz Scientific Publishers, Stuttgart, Germany, 207 p.Google Scholar
Cumming, B. F., Laird, K. R., Bennett, J. R., Smol, J. P., and Salomon, A. K. 2002. Persistent millennial-scale shifts in moisture regimes in western Canada during the past six millennia. Proceedings of the National Academy of Sciences, 99:16,117–16,121.Google Scholar
Dixit, S. S., Smol, J. P., Charles, D. F., Hughes, R. M., Paulsen, S. G., and Collins, G. B. 1999. Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Canadian Journal of Fisheries and Aquatic Science, 56:131152.Google Scholar
Douglas, M. S. V., and Smol, J. P. 1994. Limnology of high arctic ponds (Cape Herschel, Ellesmere Island, N.W.T.). Archiv für Hydrobiologie, 131:401–34.Google Scholar
Douglas, M. S. V., and Smol, J. P. 1999. Freshwater diatoms as indicators of environmental change in the High Arctic, p. 403420. In Stoermer, E. F., and Smol, J. P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.Google Scholar
Ekdahl, E. J., Fritz, S. C., Baker, P. A., Rigsby, C. A., and Coley, K. In press. Holocene Multi-Decadal to Millennial-Scale Hydrologic Variability on the South American Altiplano. The Holocene.Google Scholar
Fritz, S. C. 1990. Twentieth-century salinity and water-level fluctuations in Devils Lake, N. Dakota: A test of a diatom-based transfer function. Limnology and Oceanography, 35:1771–81.Google Scholar
Fritz, S. C. 2007. Diatom Methods: Salinity Reconstructions from Continental Lakes, p. 6271. In Elias, S. (ed.), Encyclopedia of Quaternary Science, Elsevier, Amsterdam, The Netherlands.Google Scholar
Fritz, , Juggins, S. C. S., and Battarbee, R. W. 1993. Diatom assemblages and ionic characterization of lakes of the northern Great Plains, North America: A tool for reconstructing past salinity and climate fluctuations. Canadian Journal of Fisheries and Aquatic Sciences, 50:1844–56.Google Scholar
Fritz, S. C., Cumming, B. F., Gasse, F., and Laird, K.R. 1999. Diatoms as Indicators of Hydrologic and Climatic Change in Saline Lakes, p. 4172. In Stoermer, E.F. and Smol, J.P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.Google Scholar
Fritz, S. C., Juggins, S., Battarbee, R. W., and Engstrom, D. R. 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature, 352:706708.Google Scholar
Fritz, S. C., Ito, E., Yu, Z., Laird, K. R., and Engstrom, D. R. 2000. Hydrologic variation in the northern Great Plains during the last two millennia. Quaternary Research, 53:175184.Google Scholar
Fritz, S. C., Baker, P. A., Lowenstein, T. K., Seltzer, G. O., Rigsby, C. A., Dwyer, G. S., Tapia, P. M., Arnold, K. K., Ku, T., and Luo, S. 2004. Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quaternary Research, 61:95104.Google Scholar
Garreaud, R., Vuille, M., and Clement, A. C. 2003. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 194:522.Google Scholar
Gasse, F. 1980. Les diatomées lacustres Plio-Pléistocenes du Bageb (Étiopie). Systématique, Paléoécologie, Biostratigraphie. Revue Algologique, Memoire horse-série 3, 249 p.Google Scholar
Gasse, F., Juggins, S., and Khelifa, B. 1995. Diatom-based transfer functions for inferring hydrochemical characteristics of African palaeolakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 117:3154.Google Scholar
Gray, S. T., Betancourt, J. L., Fastie, C. L., and Jackson, S. T. 2003. Patterns and sources of multidecadal oscillations in drought-sensitive tree-ring records from the central and southern Rocky Mountains. Geophysical Research Letters, 30: doi:10.1029/2002GL016154.Google Scholar
Heywood, R. B. 1977. Antarctic freshwater ecosystems: review and synthesis, p. 801828. In Llano, G.A. (ed.), Adaptations within Antarctic Ecosystems, Smithsonian Institution, Washington D.C. Google Scholar
Hodgson, D. A., Roberts, D., McMinn, A., Verleyen, E., Terry, B., Corbett, C., and Vyverman, W. 2006. Recent rapid salinity rise in three East Antarctic lakes. Journal of Paleolimnology, 36:385406.Google Scholar
Hodgson, D. A., Verleyen, E., Sabbe, K., Squier, A. H., Keely, B. J., Leng, M. J., Saunders, K. M., and Vyverman, W. 2005. Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multi-proxy evidence from a lake sediment core. Quaternary Research, 64:8399.Google Scholar
Hui, F., Gasse, F., Huc, A., Yuanfang, L., Sifeddine, A., and Soulie-Marsche, I. 1996. Holocene environmental changes in Ban-gong Co. Basin (Western Tibet). Part 3: Biogenic remains. Palaeogeography, Palaeoclimatology, Palaeoecology, 120:6578.Google Scholar
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, 2007. http://ipcc-wg1.ucar.edu/wg1/wg1-report.html.Google Scholar
Kashima, K. 2003. The quantitative reconstruction of salinity changes using diatom assemblages in inland saline lakes in the central part of Turkey during the late Quaternary. Quaternary International, 105:1319.Google Scholar
Laird, K. R., Fritz, S. C., Grimm, E. C., and Cumming, B. F. 1996A. Greater drought intensity and frequency before AD 1200 in the Northern Great Plains, USA. Nature, 384:552555.Google Scholar
Laird, K. R., Fritz, S. C., Grimm, E. C., and Mueller, P. G. 1996B. Century-scale paleoclimatic reconstruction from Moon Lake, a closed-basin lake in the Northern Great Plains. Limnology and Oceanography, 41:890902.Google Scholar
Laird, K. R., Fritz, S. C., Grimm, E. C., and Cumming, B. F. 1997. Early Holocene limnologic and climatic variability in the northern Great Plains. Holocene, 8:275286.Google Scholar
Mantua, N., and Hare, S. 2002. The Pacific Decadal Oscillation. Journal of Oceanography, 58:3544.Google Scholar
McCabe, G. J., and Dettinger, M. D. 1999. Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States, International Journal of Climatology, 19:10691079.Google Scholar
McCabe, G. J., Palecki, M. A., and Betancourt, J. L. 2004. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proceedings of the National Academy of Sciences, 101:41364141.Google Scholar
Pickard, J., Adamson, D. A., and Heath, C. W. 1986. The evolution of Watts Lake, Vestfold Hills, East Antarctica, from Marine Inlet to Freshwater Lake. Palaeogeography, Palaeoclimatology, Palaeoecology, 53:271–88.Google Scholar
Polissar, P. J., Abbott, M. B., Wolfe, A. P., Bezada, M., and Bradley, R. S. 2004. Solar modulation of Little Ice Age climate in the tropical Andes. Proceedings of the National Academy of Sciences, 103:89378942.Google Scholar
Radle, N., Keister, C. M., and Battarbee, R. W. 1989. Diatom, pollen, and geochemical evidence for the palaeosalinity of Medicine Lake, S. Dakota, During the late Wisconsin and early Holocene. Journal of Paleolimnology, 2:159172.Google Scholar
Reed, J. M. 1998. A diatom-conductivity transfer function for Spanish salt lakes. Journal of Paleolimnology, 19:399416.Google Scholar
Roberts, D. 2001. High Resolution palaeoclimate analysis of the Windmill Islands: the last 200 years. http://aadc-maps.aad.gov.au/aadc/portal.Google Scholar
Roberts, D., and McMinn, A. 1996. Relationships between surface sediment diatom assemblages and water chemistry gradients in saline lakes of the Vestfold Hills, Antarctica. Antarctic Science, 8:331341.Google Scholar
Roberts, D., and McMinn, A. 1998. A weighted-averaging regression and calibration model for inferring lakewater salinity from fossil diatom assemblages in saline lakes of the Vestfold Hills: a new tool for interpreting Holocene lake histories in Antarctica. Journal of Paleolimnology, 19:99113.Google Scholar
Roberts, D., and McMinn, A. A. 1999. Diatoms of the saline lakes of the Vestfold Hills, Antarctica. Bibliotheca Diatomologica 44, 83 p.Google Scholar
Roberts, D., McMinn, A., Johnston, N., Gore, D. B., Melles, M., and Cremer, H. 2001. An analysis of the limnology and sedimentary diatom flora of fourteen lakes and ponds from the Windmill Islands, East Antarctica. Antarctic Science, 13:410419.Google Scholar
Rowe, H. D., Dunbar, R. B., Mucciarone, D. A., Seltzer, G. O., Baker, P. A., and Fritz, S. C. 2002. Insolation, moisture balance and climate change on the South American Altiplano since the last Glacial Maximum. Climatic Change, 52, 175199.Google Scholar
Rowe, H. D., Guilderson, T. P., Dunbar, R. B., Southon, J. R., Seltzer, G. O., Mucciarone, D. A., Fritz, S. C., and Baker, P. A. 2003. Late Quaternary lake-level changes constrained by radiocarbon and stable isotope studies on sediment cores from Lake Titicaca, South America. Global and Planetary Change, 38:273290.Google Scholar
Rusak, J. A., Leavitt, P. R., McGowan, S., Chen, G., Olson, O., Wunsam, S., and Cumming, B. F. 2004. Millennial-scale relationships of diatom species richness and production in two prairie lakes. Limnology and Oceanography, 49:12901299.Google Scholar
Schmidt, R., Mausbacher, R., and Muller, J. 1990. Holocene diatom flora and stratigraphy from sediment cores of two Antarctic lakes (King George Island). Journal of Paleolimnology, 3:5574.Google Scholar
Seltzer, G. O., Baker, P., Cross, S. C., Dunbar, R. B., and Fritz, S. C. 1998. High-resolution seismic reflection profiles from Lake Titicaca, Peru-Bolivia: Evidence for Holocene aridity in the tropical Andes. Geology, 26:167171.Google Scholar
Sabbe, K., Hodgson, D. A., Verleyen, E., Taton, A., Wilmotte, A., Vanhoutte, K., and Vyverman, W. 2003. Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands (E. Antarctica). Antarctic Science, 15:227238.Google Scholar
Saros, J. E., Fritz, S. C., and Smith, A. J. 2000. Shifts in mid- to late-Holocene anion composition in Elk Lake (Grant County, Minnesota) – a comparison of diatom and ostracode inferences. Quaternary International, 67:3746.Google Scholar
Smol, J. P., and Cumming, B. F. 2000. Tracking long-term changes in climate using algal indicators in lake sediments. Journal of Phycology, 36:9861011.Google Scholar
Smol, J. P., and Douglas, M. S. V. 2007. Crossing the final ecological threshold in high Arctic ponds. Proceedings of the National Academy of Sciences, early edition.Google Scholar
Snoeijs, P. and Balashova, N.N. (EDS.). 1998. Intercalibration and distribution of diatom species in the Baltic Sea. 5, 144 p.Google Scholar
Spaulding, S. A., and McKnight, D. M. 1999. Diatoms as indicators of environmental change in Antarctic freshwaters, p. 403420. In Stoermer, E. F., and Smol, J. P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.Google Scholar
Spaulding, S. A., McKnight, D. M., Stoermer, E. F., and Doran, P. T. 1997. Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica. Journal of Paleolimnology, 17:403420.Google Scholar
Stoermer, E. F., and Smol, J. P., (EDS.). 1999. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England. 469 p.Google Scholar
Sylvestre, F. 2002. A high-resolution diatom reconstruction between 21,000 and 17,000 14C yr BP from the southern Bolivian Altiplano (18–23°S). Journal of Paleolimnology, 27:4557.Google Scholar
Sylvestre, F., Vildary-Servant, S., and Roux, M. 2001. Diatom-based ionic concentration and salinity models from the south Bolivian Altiplano (15–23°S). Journal of Paleolimnology, 25:279295.Google Scholar
Tapia, P. M., Fritz, S. C., Baker, P. A., Seltzer, G. O., and Dunbar, R. B. 2003. A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology, 194:139164.Google Scholar
Ter Braak, C. J. F. 1986. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67:11671179.Google Scholar
Theriot, E., Carney, H. J., and Richerson, P. J. 1985. Morphology, ecology and systematics of Cyclotella andina sp. nov. (Bacillariophyceae) from Lake Titicaca, Peru-Bolivia. Phycologia, 24:381387.Google Scholar
Thompson, L. G., Mosley-Thompson, E., Brecher, H., Davis, M., Leon, B. Les, D., Lin, P., Mashiotta, T., and Mountain, K. 2006. Abrupt tropical climate change: Past and present. Proceedings of the National Academy of Sciences, 103:10,536–10,543.Google Scholar
Valero-Garces, B. L., Laird, K. R., Fritz, S. C., Kelts, K., Ito, E., and Grimm, E. C. 1997. Holocene climate in the northern Great Plains inferred from sediment stratigraphy, stable isotopes, carbonate geochemistry, diatoms, and pollen at Moon Lake, North Dakota. Quaternary Research, 48:359369.Google Scholar
Van Campo, F., and Gasse, F. 1993. Pollen and diatom-inferred climatic and hydrological changes in Sumxi Co. Basin (western Tibet) since 13,000 yr B.P. Quaternary Research, 39:300–13.Google Scholar
Verleyen, E., Hodgson, D. A., Vyverman, W., Roberts, D., McMinn, A., Vanhoutte, K., and Sabbe, K. 2003. Modeling diatom responses to climate induced fluctuations in the moisture balance in continental Antarctic lakes. Journal of Paleolimnology, 30:195215.Google Scholar
Villalba, R., D'Arrigo, R. D., Cook, E. R., Jacoby, G. C., and Wiles, G. 2001. Decadalscale climatic variability along the extratropical western coast of the Americas: Evidence from tree-ring records, p. 155172. In Markgraf, V. (ed.), Interhemispheric Climate Linkages. Academic Press, San Diego, California.Google Scholar
Vuille, M., Bradley, R. S., and Keimig, F. 2000. Interannual climate variability in the central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research, 105:12,447–12,460.Google Scholar
Webster, J., Hawes, I., Downes, M., Timperly, M., and Howard-Williams, C. 1996. Evidence for regional climate change in the recent evolution of a high latitude pro-glacial lake. Antarctic Science, 8:4959.Google Scholar
Wen, Z., Mian-Ping, Z., Xian-Zhong, X., Xifant, L., Gan-Lin, G., and Zhi-Hui, H. 2005. Biological and ecological features of saline lakes in northern Tibet, China. Hydrobiologia, 541:189203.Google Scholar
Williams, W. D. 1981. Inland salt lakes: An introduction. Hydrobiologia, 81:114.Google Scholar
Wilson, S. E., Cumming, B. F., and Smol, J. P. 1994. Diatom-based salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: The development of diatom-based models for paleosalinity and paleoclimatic reconstructions. Journal of Paleolimnology, 12:197221.Google Scholar
Wilson, S. E., Cummings, B. F., and Smol, J. P. 1996. Assessing the reliability of salinity inference models from diatom assemblages: An examination of a 219-lake data set from Western North America. Canadian Journal of Fisheries and Aquatic Sciences, 53:15801594.Google Scholar
Yang, X., Kamenik, C., Schmidt, R., and Wang, S. 2003. Diatom-based conductivity and water-level inference models from eastern Tibetan (Qinghai-Xizang) Plateau lakes. Journal of Paleolimnology, 30:119.Google Scholar
Zhou, J., and Lau, K. M. 1998. Does a monsoon climate exist over South America? Journal of Climate, 11:20202040.Google Scholar