Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T12:55:23.449Z Has data issue: false hasContentIssue false

Climate Reconstruction from Leaf Size and Shape: New Developments and Challenges

Published online by Cambridge University Press:  21 July 2017

Dana L. Royer*
Affiliation:
Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459 USA. [email protected]
Get access

Abstract

Leaf physiognomy (size and shape) in fossils is commonly used to reconstruct terrestrial paleoclimate. Physiognomic leaf-climate methods are underpinned mostly by the covariation between toothed margins and mean annual temperature (MAT) and between leaf size and mean annual precipitation. Digital leaf physiognomy, a multivariate method based largely on variables that are functionally linked to climate and that can be measured by computer algorithm, minimizes many of the deficiencies present in other approaches. Nevertheless, the relationships between MAT and many physiognomic variables, especially tooth-related variables, are confounded by leaf thickness, leaf habit (deciduous vs. evergreen), and phylogenetic history. Until these factors are properly accounted for, a minimum error in MAT of ±4 ° for digital leaf physiognomy and ±5 ° for other methods should be assumed.

Type
Research Article
Copyright
Copyright © 2012 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramoff, M. D., Magelhaes, P. J., and Ram, S. J. 2004. Image processing with ImageJ. Bio-photonics International, 11:3642.Google Scholar
Adams, J. M., Green, W. A., and Zhang, Y. 2008. Leaf margins and temperature in the North American flora: recalibrating the paleoclimatic thermometer. Global and Planetary Change, 60:523534.CrossRefGoogle Scholar
Adams, J. M., Ahn, S., Ainuddin, N., and Lee, M.-L. 2011. A further test of a palaeoecological thermometer: tropical rainforests have more herbivore damage diversity than temperate forests. Review of Paleobotany and Palynology, 164:6066.CrossRefGoogle Scholar
Aizen, M. A., and Ezcurra, C. 2008. Do leaf margins of the temperate forest flora of southern South America reflect a warmer past? Global Ecology and Biogeography, 17:164174.CrossRefGoogle Scholar
Axelrod, D. I. 1966. The Eocene Copper Basin flora of northeastern Nevada. University of California Publications in Geological Sciences, 59:186.Google Scholar
Axelrod, D. I., and Bailey, H. P. 1969. Paleotemperature analysis of Tertiary floras. Palaeogeography Palaeoclimatology Palaeoecology, 6:163195.CrossRefGoogle Scholar
Backhaus, A., Kuwabara, A., Bauch, M., Monk, N., Sanguinetti, G., and Fleming, A. 2010. LEAFPROCESSOR: a new leaf phenotyping tool using contour bending energy and shape cluster analysis. New Phytologist, 187:251261.CrossRefGoogle ScholarPubMed
Bailey, I. W., and Sinnott, E. W. 1915. A botanical index of Cretaceous and Tertiary climates. Science, 41:831834.CrossRefGoogle ScholarPubMed
Bailey, I. W., and Sinnott, E. W. 1916. The climatic distribution of certain types of angiosperm leaves. American Journal of Botany, 3:2439.CrossRefGoogle Scholar
Baker-Brosh, K. F., and Peet, R. K. 1997. The ecological significance of lobed and toothed leaves in temperate forest trees. Ecology, 78:12501255.Google Scholar
Bakr, E. M. 2005. A new software for measuring leaf area, and area damaged by Tetranychus urticae Koch. Journal of Applied Entomology, 129:173175.CrossRefGoogle Scholar
Billings, F. H. 1905. Precursory leaf serrations of Ulmus . Botanical Gazette, 40:224225.CrossRefGoogle Scholar
Blein, T., Pulido, A., Vialette-Guiraud, A., Nikovics, K., Morin, H., Hay, A., Johansen, I. E., Tsiantis, M., and Laufs, P. 2008. A conserved molecular framework for compound leaf development. Science, 322:18351839.CrossRefGoogle ScholarPubMed
Boyle, B., Meyer, H. W., Enquist, B., and Salas, S. 2008. Higher taxa as paleoecological and paleoclimatic indicators: A search for the modern analog of the Florissant fossil flora, p. 3351 In Meyer, H. W. and Smith, D. M. (eds.), Paleontology of the Upper Eocene Florissant Formation, Colorado. Geological Society of America Special Paper 435, Boulder, Colorado.CrossRefGoogle Scholar
Brenner, W. 1902. Klima und blatt bei der gattung Quercus . Flora, 90:114160.Google Scholar
Brown, V. K., and Lawton, J. H. 1991. Herbivory and the evolution of leaf size and shape. Philosophical Transactions of the Royal Society London B, 333:265272.Google Scholar
Burnham, R. J. 1989. Relationships between standing vegetation and leaf litter in a paratropical forest: implications for paleobotany. Review of Paleobotany and Palynology, 58:532.CrossRefGoogle Scholar
Burnham, R. J. 1993. Reconstructing richness in the plant fossil record. Palaios, 8:376384.CrossRefGoogle Scholar
Burnham, R. J., and Tonkovich, G. S. 2011. Climate, leaves, and the legacy of two giants. New Phtologist, 190:514517.CrossRefGoogle ScholarPubMed
Burnham, R. J., Wing, S. L., and Parker, G. G. 1992. The reflection of deciduous forest communities in leaf litter: implications for autochthonous litter assemblages from the fossil record. Paleobiology, 18:3049.CrossRefGoogle Scholar
Burnham, R. J., Pitman, N. C. A., Johnson, K. R., and Wilf, P. 2001. Habitat-related error in estimating temperatures from leaf margins in a humid tropical forest. American Journal of Botany, 88:10961102.CrossRefGoogle Scholar
Burnham, R. J., Ellis, B., and Johnson, K. R. 2005. Modern tropical forest taphonomy: does high biodiversity affect paleoclimatic interpretations? Palaios, 20:439451.CrossRefGoogle Scholar
Bylesjö, M., Segura, V., Soolanayakanahally, R. Y., Rae, A. M., Trygg, J., Gustafsson, P., Jansson, S., and Street, N. R. 2008. LAMINA: a tool for rapid quantification of leaf size and shape parameters. BMC Plant Biology, 8, 82, doi:10/1186/1471-2229-8-82.CrossRefGoogle Scholar
Canny, M. 1990. What becomes of the transpiration stream? New Phytologist, 114:341368.CrossRefGoogle ScholarPubMed
Carpenter, R. J., Jordan, G. J., Macphail, M. K., and Hill, R. S. 2012. Near-tropical Early Eocene terrestrial temperatures at the Australo-Antarctic margin, western Tasmania. Geology, 40:267270.CrossRefGoogle Scholar
Carpenter, S. J., Erickson, J. M., and Holland, F. D. 2003. Migration of a late Cretaceous fish. Nature, 423:7074.CrossRefGoogle ScholarPubMed
Chaloner, W. G., and Creber, G. T. 1990. Do fossil plants give a climatic signal? Journal of the Geological Society, London, 147:343350.CrossRefGoogle Scholar
Cramer, M. D., Hawkins, H.-J., and Verboom, G. A. 2009. The importance of nutritional regulation of plant water flux. Oecologia, 161:1524.CrossRefGoogle ScholarPubMed
Davies-Vollum, K. S. 1997. Early Palaeocene palaeoclimatic inferences from fossil floras of the western interior, USA. Palaeogeography Palaeoclimatology Palaeoecology, 136:145164.CrossRefGoogle Scholar
Davis, J. M., and Taylor, S. E. 1980. Leaf physiognomy and climate: a multivariate analysis. Quaternary Research, 14:337348.CrossRefGoogle Scholar
Dilcher, D. L., Kowalski, E. A., Wiemann, M. C., Hinojosa, L. F., and Lott, T. A. 2009. A climatic and taxonomic comparison between leaf litter and standing vegetation from a Florida swamp woodland. American Journal of Botany, 96:11081115.CrossRefGoogle ScholarPubMed
Feild, T. S., Sage, T. L., Czerniak, C., and Iles, W. J. D. 2005. Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttationinduced flooding of the mesophyll. Plant, Cell and Environment, 28:11791190.CrossRefGoogle Scholar
Fricke, H. C., and Wing, S. L. 2004. Oxygen isotope and paleobotanical estimates of temperature and δ18O-latitude gradients over North America during the early Eocene. American Journal of Science, 304:612635.CrossRefGoogle Scholar
Garibaldi, L. A., Kitzberger, T., and Ruggiero, A. 2011. Latitudinal decrease in folivory within Nothofagus pumilio forests: dual effect of climate on insect density and leaf traits? Global Ecology and Biogeography, 20:609619.CrossRefGoogle Scholar
Gates, D. M. 1980. Biophysical Ecology. Springer-Verlag, New York.CrossRefGoogle Scholar
Givnish, T. J. 1978. Ecological aspects of plant morphology: leaf form in relation to environment. Acta Biotheoretica (Supplement: Folia Biotheoretica No. 7), 27:83142.Google Scholar
Givnish, T. J. 1979. On the adaptive significance of leaf form, p. 375407 In Solbrig, O. T., Jain, S., Johnson, G. B., and Raven, P. H. (eds.), Topics in Plant Population Biology. Columbia University Press, New York.Google Scholar
Givnish, T. J. 1984. Leaf and canopy adaptations in tropical forests, p. 5184 In Medina, E., Mooney, H. A., and Vázquez-Yánes, C. (eds.), Physiological Ecology of Plants of the Wet Tropics. Dr. W. Junk, The Hague.CrossRefGoogle Scholar
Givnish, T. J. 2002. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica, 36:703743.CrossRefGoogle Scholar
Givnish, T. J., and Vermeij, G. J. 1976. Sizes and shapes of liane leaves. American Naturalist, 110:743778.CrossRefGoogle Scholar
Glasspool, I. J., Hilton, J., Collinson, M. E., Wang, S.-J., and Sen, L.-C. 2004. Foliar physiognomy in Cathaysian gigantopterids and the potential to track Palaeozoic climates using an extinct plant group. Palaeogeography Palaeoclimatology Palaeoecology, 205:69110.CrossRefGoogle Scholar
Gottschlich, D. E., and Smith, A. P. 1982. Convective heat transfer characteristics of toothed leaves. Oecologia, 53:418420.CrossRefGoogle ScholarPubMed
Green, W. A. 2006. Loosening the CLAMP: an exploratory graphical approach to the Climate Leaf Analysis Multivariate Program. Palaeontologia Electronica, 9.2.9A:117.Google Scholar
Greenwood, D. R. 1992. Taphonomic constraints on foliar physiognomic interpretations of Late Cretaceous and Tertiary palaeoclimates. Review of Palaeobotany and Palynology, 71:149190.CrossRefGoogle Scholar
Greenwood, D. R. 2005a. Leaf form and the reconstruction of past climates. New Phytologist, 166:355357.CrossRefGoogle ScholarPubMed
Greenwood, D. R. 2005b. Leaf margin analysis: taphonomic constraints. Palaios, 20:498505.CrossRefGoogle Scholar
Greenwood, D. R. 2007. Fossil angiosperm leaves and climate: from Wolfe and Dilcher to Burnham and Wilf. Courier Forschungsinstitut Senckenberg, 258:95108.Google Scholar
Greenwood, D. R., and Wing, S. L. 1995. Eocene continental climates and latitudinal temperature gradients. Geology, 23:10441048.2.3.CO;2>CrossRefGoogle Scholar
Greenwood, D. R., Wilf, P., Wing, S. L., and Christophel, D. C. 2004. Paleotemperature estimation using leaf-margin analysis: is Australia different? Palaios, 19:129142.2.0.CO;2>CrossRefGoogle Scholar
Greenwood, D. R., Archibald, S. B., Mathewes, R. W., and Moss, P. T. 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Sciences, 42:167185.CrossRefGoogle Scholar
Greenwood, D. R., Basinger, J. F., and Smith, R. Y. 2010. How wet was the Arctic Eocene rain forest? Estimates of precipitation from Paleogene Arctic macrofloras. Geology, 38:1518.CrossRefGoogle Scholar
Gregory, K. M. 1996. Are paleoclimate estimates biased by foliar physiognomic responses to increased atmospheric CO2? Palaeogeography Palaeoclimatology Palaeoecology, 124:3951.CrossRefGoogle Scholar
Gregory-Wodzicki, K. M. 2000. Relationships between leaf morphology and climate, Bolivia: implications for estimating paleoclimate from fossil floras. Paleobiology, 26:668688.2.0.CO;2>CrossRefGoogle Scholar
Grein, M., Utescher, T., Wilde, V., and Roth-Nebelsick, A. 2011. Reconstruction of the middle Eocene climate of Messel using palaeobotanical data. Neues Jahrbuch Für Geologie und Palaontologie Abhandlungen, 260:305318.CrossRefGoogle Scholar
Grimm, G.W., and Denk, T. 2012. Reliability and resolution of the coexistence approach—a revalidation using modern-day data. Review of Palaeobotany and Palynology, 172:3347.CrossRefGoogle Scholar
Groot, E. P., and Meicenheimer, R. D. 2000. Comparison of leaf plastochron index and allometric analyses of tooth development in Arabidopsis thaliana . Journal of Plant Growth Regulation, 19:7789.CrossRefGoogle ScholarPubMed
Halloy, S. R. P., and Mark, A. F. 1996. Comparative leaf morphology spectra of plant communities in New Zealand, the Andes and the European Alps. Journal of the Royal Society of New Zealand, 26:4178.CrossRefGoogle Scholar
Hinojosa, L. F., Armesto, J. J., and Villagrán, C. 2006. Are Chilean coastal forests pre-Pleistocene relicts? Evidence from foliar physiognomy, palaeoclimate, and phytogeography. Journal of Biogeography, 33:331341.CrossRefGoogle Scholar
Hinojosa, L. F., Pérez, F., Gaxiola, A., and Sandoval, I. 2011. Historical and phylogenetic constraints on the incidence of entire leaf margins: insights from a new South American model. Global Ecology and Biogeography, 20:380390.CrossRefGoogle Scholar
Huff, P. M., Wilf, P., and Azumah, E. J. 2003. Digital future for paleoclimate estimation from fossil leaves? Preliminary results. Palaios, 18:266274.2.0.CO;2>CrossRefGoogle Scholar
Jacobs, B. F. 1999. Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeography Palaeoclimatology Palaeoecology, 145:231250.CrossRefGoogle Scholar
Jacobs, B. F., and Deino, A. L. 1996. Test of climate-leaf physiognomy regression models, their application to two Miocene floras from Kenya, and 40Ar/39Ar dating of the Late Miocene Kapturo site. Palaeogeography Palaeoclimatology Palaeoecology, 123:259271.CrossRefGoogle Scholar
Jacques, F. M. B., Su, T., Spicer, R. A., Xing, Y., Huang, Y., Wang, W., and Zhou, Z. 2011. Leaf physiognomy and climate: are monsoon systems different? Global and Planetary Change, 76:5662.CrossRefGoogle Scholar
Jones, C. S., Bakker, F. T., Schlichting, C. D., and Nicotra, A. B. 2009. Leaf shape evolution in the South African genus Pelargonium L'Her. (Geraniaceae). Evolution, 63:479497.CrossRefGoogle ScholarPubMed
Jordan, G. J. 1997. Uncertainty in palaeoclimatic reconstructions based on leaf physiognomy. Australian Journal of Botany, 45:527547.CrossRefGoogle Scholar
Jordan, G. J. 2011. A critical framework for the assessment of biological palaeoproxies: predicting past climate and levels of atmospheric CO2 from fossil leaves. New Phytologist, 192:2944.CrossRefGoogle ScholarPubMed
Kennedy, E. M. 2003. Late Cretaceous and Paleocene terrestrial climates of New Zealand: leaf fossil evidence from South Island assemblages. New Zealand Journal of Geology & Geophysics, 46:295306.CrossRefGoogle Scholar
Kowalski, E. A. 2002. Mean annual temperature estimation based on leaf morphology: a test from tropical South America. Palaeogeography Palaeoclimatology Palaeoecology, 188:141165.CrossRefGoogle Scholar
Kowalski, E. A., and Dilcher, D. L. 2003. Warmer paleotemperatures for terrestrial ecosystems. Proceedings of the National Academy of Sciences USA, 100:167170.CrossRefGoogle ScholarPubMed
Krieger, J. D., Guralnick, R. P., and Smith, D. M. 2007. Generating empirically determined, continuous measures of leaf shape for paleoclimate reconstruction. Palaios, 22:212219.CrossRefGoogle Scholar
Kvacek, Z. 2007. Do extant nearest relatives of thermophile European Cenozoic plant elements reliably reflect climatic signal? Palaeogeography Palaeoclimatology Palaeoecology, 253:3240.CrossRefGoogle Scholar
Liang, M.-M., Bruch, A., Collinson, M., Mosbrugger, V., Li, C.-S., Sun, Q.-G., and Hilton, J. 2003. Testing the climatic estimates from different palaeobotanical methods: an example from the Middle Miocene Shanwang flora of China. Palaeogeography Palaeoclimatology Palaeoecology, 198:279301.CrossRefGoogle Scholar
Little, S. A., Kembel, S. W., and Wilf, P. 2010. Paleotemperature proxies from leaf fossils reinterpreted in light of evolutionary history. PLoS ONE, 5(12):e15161.CrossRefGoogle ScholarPubMed
Macginitie, H. D. 1969. The Eocene Green River flora of northwestern Colorado and northeastern Utah. University of California Publications in Geological Sciences, 83:1202.Google Scholar
Macginitie, H. D. 1974. An early middle Eocene flora from the Yellowstone-Absaroka volcanic province, northwestern Wind River Basin, Wyoming. University of California Publications in Geological Sciences, 108:1103.Google Scholar
Malhado, A. C. M., Malhi, Y., Whittaker, R. J., Ladle, R. J., Ter Steege, H., Aragão, L. E. O. C., Quesada, C. A., Araujomurakami, A., Phillips, O. L., Peacock, J., López-González, G., Baker, T. R., Butt, N., Anderson, L. O., Arroyo, L., Almeida, S., Higuchi, N., Killeen, T. J., Monteagudo, A., Neill, D., Pitman, N., Prieto, A., Salomão, R. P., Silva, N., Vásquez-M, R., and Laurance, W. F. 2009. Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences, 6:15631576.CrossRefGoogle Scholar
Martinetto, E., Uhl, D., and Tarabra, E. 2007. Leaf physiognomic indications for a moist warm-temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeography Palaeoclimatology Palaeoecology, 253:4155.CrossRefGoogle Scholar
Mauseth, J. D. 1988. Plant Anatomy. Benjamin/Cummings, Menlo Park, California, USA.Google Scholar
Midgley, J. J., Van Wyk, G. R., and Everard, D. A. 1995. Leaf attributes of South African forest species. African Journal of Ecology, 33:160168.CrossRefGoogle Scholar
Miller, I. M., Brandon, M. T., and Hickey, L. J. 2006. Using leaf margin analysis to estimate the mid-Cretaceous (Albian) paleolatitude of the Baja BC block. Earth and Planetary Science Letters, 245:95114.CrossRefGoogle Scholar
Mora, G., and Jahren, A. H. 2003. Isotopic evidence for the role of plant development on transpiration in deciduous forests of southern United States. Global Biogeochemical Cycles, 17, 1044, doi:10.1029/2002GB001981.CrossRefGoogle Scholar
Mortlock, C. 1952. The structure and development of the hydathodes of Ranunculus fluitans Lam. New Phytologist, 51:129138.CrossRefGoogle Scholar
Niinemets, Ü. 1999. Components of leaf dry mass per area – thickness and density – alter leaf photo-synthetic capacity in reverse directions in woody plants. New Phytologist, 144:3547.CrossRefGoogle Scholar
Nikovics, K., Blein, T., Peaucelle, A., Ishida, T., Morin, H., Aida, M., and Laufs, P. 2006. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis . The Plant Cell, 18:29292945.CrossRefGoogle ScholarPubMed
Parrish, J. T. 1998. Interpreting Pre-Quaternary Climate from the Geologic Record. Columbia University Press, New York.Google Scholar
Peppe, D. J., Royer, D. L., Wilf, P., and Kowalski, E. A. 2010. Quantification of large uncertainties in fossil leaf paleoaltimetry. Tectonics, 29, TC3015, doi:10.1029/2009TC002549.CrossRefGoogle Scholar
Peppe, D. J., Royer, D. L., Cariglino, B., Oliver, S. Y., Newman, S., Leight, E., Enikolopov, G., Fernandez-Burgos, M., Herrera, F., Adams, J. M., Correa, E., Currano, E. D., Erickson, J. M., Hinojosa, L. F., Hoganson, J. W., Iglesias, A., Jaramillo, C. A., Johnson, K. R., Jordan, G. J., Kraft, N. J. B., Lovelock, E. C., Lusk, C. H., Niinemets, Ü., Peñuelas, J., Rapson, G., Wing, S. L., and Wright, I. J. 2011. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190:724739.CrossRefGoogle ScholarPubMed
Raschke, K. 1960. Heat transfer between the plant and the environment. Annual Review of Plant Physiology, 11:111126.CrossRefGoogle Scholar
Reinhardt, B., Hänggi, E., Müller, S., Bauch, M., Wyrzykowska, J., Kerstetter, R., Poethig, S., and Fleming, A. J. 2007. Restoration of DWF4 expression to the leaf margin of a dwf4 mutant is sufficient to restore leaf shape but not size: the role of the margin in leaf development. The Plant Journal, 52:10941104.CrossRefGoogle Scholar
Ricardi-Branco, F., Branco, F. C., Garcia, R. J. F., Faria, R. S., Pereira, S. Y., Portugal, R., Pessenda, L. C., and Pereira, P. R. B. 2009. Plant accumulations along the Itanhaém River Basin, southern coast of Sao Paulo State, Brazil. Palaios, 24:416424.CrossRefGoogle Scholar
Richards, P. W. 1996. The Tropical Rain Forest. Cambridge University Press, Cambridge.Google Scholar
Rivero-Lynch, A. P., Brown, V. K., and Lawton, J. H. 1996. The impact of leaf shape on the feeding preference of insect herbivores: experimental and field studies with Capsella and Phyllotreta . Philosophical Transactions of the Royal Society London B, 351:16711677.Google Scholar
Roth, A., Mosbrugger, V., Belz, G., and Neugebauer, H. 1995. Hydrodynamic modelling study of angiosperm leaf venation types. Botanica Acta, 108:121126.CrossRefGoogle Scholar
Royer, D. L., and Wilf, P. 2006. Why do toothed leaves correlate with cold climates? Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. International Journal of Plant Sciences, 167:1118.CrossRefGoogle Scholar
Royer, D. L., and Peppe, D. J. 2012. Digital leaf physiognomy. http://droyer.web.wesleyan.edu/DigitalLeafPhysiognomy.htm.Google Scholar
Royer, D. L., Wilf, P., Janesko, D. A., Kowalski, E. A., and Dilcher, D. L. 2005. Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany, 92:11411151.CrossRefGoogle ScholarPubMed
Royer, D. L., Sack, L., Wilf, P., Lusk, C. H., Jordan, G. J., Niinemets, Ü., Wright, I. J., Westoby, M., Cariglino, B., Coley, P. D., Cutter, A. D., Johnson, K. R., Labandeira, C. C., Moles, A. T., Palmer, M. B., and Valladares, F. 2007. Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology, 33:574589.CrossRefGoogle Scholar
Royer, D. L., Mcelwain, J. C., Adams, J. M., and Wilf, P. 2008. Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii . New Phytologist, 179:808817.CrossRefGoogle ScholarPubMed
Royer, D. L., Kooyman, R. M., and Wilf, P. 2009a. Ecology of leaf teeth: a multi-site analysis from an Australian subtropical rainforest. American Journal of Botany, 96:738750.CrossRefGoogle ScholarPubMed
Royer, D. L., Meyerson, L. A., Robertson, K. M., and Adams, J. M. 2009b. Phenotypic plasticity of leaf shape along a temperature gradient in Acer rubrum . PLoS ONE, 4 (10):e7653.CrossRefGoogle ScholarPubMed
Royer, D. L., Peppe, D. J., Wheeler, E. A., and Niinemets, Ü. 2012. Roles of temperature and life-history traits in controlling toothed vs. untoothed leaf margins. American Journal of Botany, 99:915922.CrossRefGoogle Scholar
Scoffoni, C., Rawls, M., Mckown, A., Cochard, H., and Sack, L. 2011. Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156:832843.CrossRefGoogle ScholarPubMed
Smith, R. Y., Basinger, J. F., and Greenwood, D. R. 2009. Depositional setting, fossil flora, and paleoenvironment of the Early Eocene Falkland site, Okanagan Highlands, British Columbia. Canadian Journal of Earth Sciences, 46:811822.CrossRefGoogle Scholar
Spicer, R. A. 1981. The sorting and deposition of allochthonous plant material in a modern environment at Silwood Lake, Silwood Park, Berkshire, England. U.S. Geological Survey Professional Paper, 1143:177.Google Scholar
Spicer, R. A. 2012. CLAMP online. http://clamp.ibcas.ac.cn/.Google Scholar
Spicer, R. A., and Wolfe, J. A. 1987. Plant taphonomy of late Holocene deposits in Trinity (Clair Engle) Lake, northern California. Paleobiology, 13:227245.CrossRefGoogle Scholar
Spicer, R. A., and Yang, J. 2010. Quantification of uncertainties in fossil leaf paleoaltimetry: does leaf size matter? Tectonics, 29, TC6001, doi:10.1029/2010TC002741.CrossRefGoogle Scholar
Spicer, R. A., Herman, A. B., and Kennedy, E. M. 2004. Foliar physiognomic record of climatic conditions during dormancy: Climate Leaf Analysis Multivariate Program (CLAMP) and the cold month mean temperature. Journal of Geology, 112:685702.CrossRefGoogle Scholar
Spicer, R. A., Herman, A. B., and Kennedy, E. M. 2005. The sensitivity of CLAMP to taphonomic loss of foliar physiognomic characters. Palaios, 20:429438.CrossRefGoogle Scholar
Spicer, R. A., Valdes, P. J., Spicer, T. E. V., Craggs, H. J., Srivastava, G., Mehrotra, R. C., and Yang, J. 2009. New developments in CLAMP: calibration using global gridded meteorological data. Palaeogeography Palaeoclimatology Palaeoecology, 283:9198.CrossRefGoogle Scholar
Spicer, R. A., Bera, S., De Bera, S., Spicer, T. E. V., Srivastava, G., Mehrotra, R., Mehrotra, N., and Yang, J. 2011. Why do foliar physiognomic climate estimates sometimes differ from those observed? Insights from taphonomic information loss and a CLAMP case study from the Ganges Delta. Palaeogeography Palaeoclimatology Palaeoecology, 302:381395.CrossRefGoogle Scholar
Steart, D. S., Boon, P. I., and Greenwood, D. R. 2006. Overland transport of leaves in two forest types in southern Victoria, Australia and its implications for palaeobotanical studies. Proceedings of the Royal Society of Victoria, 118:6574.Google Scholar
Steart, D. C., Spicer, R. A., and Bamford, M. K. 2010. Is southern Africa different? An investigation of the relationship between leaf physiognomy and climate in southern African mesic vegetation. Review of Paleobotany and Palynology, 162:607620.CrossRefGoogle Scholar
Stevens, A. B. P. 1956. The structure and development of the hydathodes of Catha palustris L. New Phytologist, 55:339345.CrossRefGoogle Scholar
Stranks, L., and England, P. 1997. The use of a resemblance function in the measurement of climatic parameters from the physiognomy of woody dicotyledons. Palaeogeography Palaeoclimatology Palaeoecology, 131:1528.CrossRefGoogle Scholar
Su, T., Xing, Y.-W., Liu, Y.-S., Jacques, F. M. B., Chen, W.-Y., Huang, Y.-J., and Zhou, Z.-K. 2010. Leaf margin analysis: a new equation from humid to mesic forests in China. Palaios, 25:234238.CrossRefGoogle Scholar
Sun, Q.-G. 2005. The rise of Chinese palaeobotany, emphasizing the global context, p. 293298 In Bowden, A. J., Burek, C. V., and Wilding, R. (eds.), History of Palaeobotany: Selected Essays. Geological Society Special Publications 241, London.CrossRefGoogle Scholar
Sunderlin, D., Loope, G., Parker, N. E., and Williams, C. J. 2011. Paleoclimatic and paleoecological implications of a Paleocene–Eocene fossil leaf assemblage, Chickaloon Formation, Alaska. Palaios, 26:335345.CrossRefGoogle Scholar
Takeda, F., Wisniewski, M. E., and Glenn, D. M. 1991. Occlusion of water pores prevents guttation in older strawberry leaves. Journal of the American Society for Horticultural Science, 116:11221125.CrossRefGoogle Scholar
Teodoridis, V., Mazouch, P., Spicer, R. A., and Uhl, D. 2010. Refining CLAMP—investigations towards improving the Climate Leaf Analysis Multivariate Program. Palaeogeography Palaeoclimatology Palaeoecology, 299:3948.CrossRefGoogle Scholar
Thomas, S., and Bazzaz, F. 1996. Elevated CO2 and leaf shape: are dandelions getting toothier? American Journal of Botany, 83:106111.CrossRefGoogle Scholar
Traiser, C., Klotz, S., Uhl, D., and Mosbrugger, V. 2005. Environmental signals from leaves—a physiognomic analysis of European vegetation. New Phytologist, 166:465484.CrossRefGoogle ScholarPubMed
Tsukaya, H., and Uchimiya, H. 1997. Genetic analyses of the formation of the serrated margin of leaf blades in Arabidopsis: combination of a mutational analysis of leaf morphogenesis with the characterization of a specific marker gene expressed in hydathodes and stipules. Molecular and General Genetics, 256:231238.CrossRefGoogle ScholarPubMed
Uhl, D., Mosbrugger, V., Bruch, A., and Utescher, T. 2003. Reconstructing palaeotemperatures using leaf floras—case studies for a comparison of leaf margin analysis and the coexistence approach. Review of Palaeobotany and Palynology, 126:4964.CrossRefGoogle Scholar
Uhl, D., Klotz, S., Traiser, C., Thiel, C., Utescher, T., Kowalski, E., and Dilcher, D. L. 2007. Cenozoic paleotemperatures and leaf physiognomy—a European perspective. Palaeogeography Palaeoclimatology Palaeoecology, 248:2431.CrossRefGoogle Scholar
Utescher, T., Mosbrugger, V., and Ash-Raf, A. R. 2000. Terrestrial climate evolution in northwest Germany over the last 25 million years. Palaios, 15:430449.2.0.CO;2>CrossRefGoogle Scholar
Vogel, S. 1970. Convective cooling at low airspeeds and the shapes of broad leaves. Journal of Experimental Botany, 21:91101.CrossRefGoogle Scholar
Webb, L. J. 1968. Environmental relationships of the structural types of Australian rain forest vegetation. Ecology, 49:296311.CrossRefGoogle Scholar
Weight, C., Parnham, D., and Waites, R. 2008. LeafAnalyser: a computational method for rapid and large-scale analyses of leaf shape variation. The Plant Journal, 53:578586.CrossRefGoogle ScholarPubMed
Wiemann, M. C., Manchester, S. R., Dilcher, D. L., Hinojosa, L. F., and Wheeler, E. A. 1998. Estimation of temperature and precipitation from morphological characters of dicotyledonous leaves. American Journal of Botany, 85:17961802.CrossRefGoogle ScholarPubMed
Wilf, P. 1997. When are leaves good thermometers? A new case for Leaf Margin Analysis. Paleobiology, 23:373390.CrossRefGoogle Scholar
Wing, S. L., and Greenwood, D. R. 1993. Fossils and fossil climate: the case for equable continental interiors in the Eocene. Philosophical Transactions of the Royal Society London B, 341:243252.Google Scholar
Wilf, P., Wing, S. L., Greenwood, D. R., and Greenwood, C. L. 1998. Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology, 26:203206.2.3.CO;2>CrossRefGoogle Scholar
Wilf, P., Wing, S. L., Greenwood, D. R., and Greenwood, C. L. 1999. Using fossil leaves as paleoprecipitation indicators: an Eocene example: reply. Geology, 27:92.Google Scholar
Wing, S. L., Bao, H., and Koch, P. L. 2000. An early Eocene cool period? Evidence for continental cooling during the warmest part of the Cenozoic, p. 197237 In Huber, B. T., MacLeod, K. G., and Wing, S. L. (eds.), Warm Climates in Earth History. Cambridge University Press, Cambridge.Google Scholar
Wolfe, J. A. 1960. Generic change in Tertiary floras in relation to age. American Journal of Science, 258-A:388399.Google Scholar
Wolfe, J. A. 1971. Tertiary climatic fluctuations and methods of analysis of Tertiary floras. Palaeogeography Palaeoclimatology Palaeoecology, 9:2757.CrossRefGoogle Scholar
Wolfe, J. A. 1977. Paleogene floras from the Gulf of Alaska region. U.S. Geological Survey Professional Paper, 997:1108.Google Scholar
Wolfe, J. A. 1979. Temperature parameters of humid to mesic forests of Eastern Asia and relation to forests of other regions of the Northern Hemisphere and Australasia. U.S. Geological Survey Professional Paper, 1106:137.Google Scholar
Wolfe, J. A. 1990. Palaeobotanical evidence for a marked temperature increase following the Cretaceous/Tertiary boundary. Nature, 343:153156.CrossRefGoogle Scholar
Wolfe, J. A. 1993. A method of obtaining climatic parameters from leaf assemblages. U.S. Geological Survey Bulletin, 2040:171.Google Scholar
Wolfe, J. A. 1994. Tertiary climatic changes at middle latitudes of western North America. Palaeogeography Palaeoclimatology Palaeoecology, 108:195205.CrossRefGoogle Scholar
Wolfe, J. A. 1995. Paleoclimatic estimates from Tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences, 23:119142.CrossRefGoogle Scholar
Wolfe, J. A., and Hopkins, D. M. 1967. Climatic changes recorded by Tertiary land floras in northwestern North America, p. 6776 In Hatai, K. (ed.), Tertiary Correlations and Climatic Changes in the Pacific. Eleventh Pacific Science Congress, Tokyo.Google Scholar
Wolfe, J. A., Forest, C. E., and Molnar, P. 1998. Paleobotanical evidence of Eocene and Oligocene paleoaltitudes in midlatitude western North America. Geological Society of America Bulletin, 110:664678.2.3.CO;2>CrossRefGoogle Scholar
Wright, I. J., Reich, P. B., and Westoby, M. 2001. Strategy-shifts in leaf physiology, structure and nutrient content between species of high and low rainfall, and high and low nutrient habitats. Functional Ecology, 15:423434.CrossRefGoogle Scholar
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., and Villar, R. 2004. The worldwide leaf economics spectrum. Nature, 428:821827.CrossRefGoogle ScholarPubMed
Wright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S., Groom, P. K., Hikosaka, K., Lee, W., Lusk, C. H., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Warton, D. I., and Westoby, M. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14:411421.CrossRefGoogle Scholar
Xu, F., Guo, W., Xu, W., and Wang, R. 2008. Habitat effects on leaf morphological plasticity in Quercus acutissima . Acta Biologica Cracoviensia Series Botanica, 50:1926.Google Scholar
Zidianakis, G., Mohr, B. A. R., and Fassoulas, C. 2007. A late Miocene leaf assemblage from Vrysses, western Crete, Greece, and its paleoenvironmental and paleoclimatic interpretation. Geodiversitas, 29:351377.Google Scholar