Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T06:17:56.493Z Has data issue: false hasContentIssue false

Biogeography and the nature and timing of the Cambrian radiation

Published online by Cambridge University Press:  21 July 2017

Bruce S. Lieberman
Affiliation:
Department of Geology, University of Kansas, 120 Lindley Hall, 1475 Jayhawk Boulevard, Lawrence 66045
Joseph G. Meert
Affiliation:
Department of Geological Science, University of Florida, 241 Williamson Hall, Gainesville, 32611
Get access

Abstract

Biogeographic patterns from early Cambrian trilobites are used to evaluate the nature and timing of the Cambrian radiation. Results from a phylogenetic biogeographic analysis reveal that patterns of vicariance are compatible with a vicariant distribution of trilobites across what were originally joined elements of the supercontinent Pannotia; further, there is limited evidence for coordinated range expansion or geo-dispersal by these trilobites. As Pannotia had split apart sometime between 550-600 Ma this suggests that trilobites, and by extension several other metazoan taxa, had begun to diversify by this interval. This result suggests that there may have been some period of cryptic diversification by metazoans prior to the Cambrian radiation, though the inferred length of this interval is not as long as that invoked by some molecular studies. Perhaps trilobites existed at low population densities in marginal environments before they became paleontologically emergent. Even though the results suggest some apparent gap in the fossil record, the evolutionary signature of this gap is still preserved in the paleobiological patterns from the fossil record, indicating that the fossil record is still the one best source of data on the nature of key episodes in the history of life, like the Cambrian radiation.

Type
Research Article
Copyright
Copyright © 2004 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayala, F. J., Rzhetsky, A., and Ayala, F. J. 1998. Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proceedings of the National Academy of Sciences, U. S. A., 95:606611.Google Scholar
Babcock, L. E. 1994. Systematics and phylogenetics of polymeroid trilobites from the Henson Gletscher and Kap Stanton formations (Middle Cambrian), North Greenland. Bulletin Grønlands geologiske Undersøgelse, 169:79127.Google Scholar
Boger, S. D., and Miller, J. Mcl. 2004. Terminal suturing of Gondwana and the onset of the Ross-Delamerian Orogeny: the cause and effect of an Early Cambrian reconfiguration of plate motions. Earth and Planetary Science Letters, 219:3548.Google Scholar
Bond, G. P., Nickeson, P. A., and Kominz, M. A. 1984. Breakup of a supercontinent between 625Ma and 555Ma: new evidence and implications for continental history. Earth and Planetary Sciences Letters, 70:325345.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science, 256:16701673.Google Scholar
Bromham, L., Rambault, A., Fortey, R. A., Cooper, A., and Penny, D. 1998. Testing the Cambrian explosion hypothesis by using a molecular dating technique. Proceedings of the National Academy of Sciences, U. S. A., 95:1238612389.CrossRefGoogle ScholarPubMed
Brooks, D. R. 1985. Historical ecology: a new approach to studying the evolution of ecological association. Annals of the Missouri Botanical Garden, 72:660680.Google Scholar
Brooks, D. R., and Mclennan, D. A. 1991. Phylogeny, Ecology, and Behavior. University of Chicago Press, Chicago, 434 p.Google Scholar
Brooks, D. R., and Mclennan, D. A. 2002. The Nature of Diversity. University of Chicago Press, Chicago, 668 p.Google Scholar
Budd, G. E., and Jensen, S. 2000. A critical reappraisal of the fossil record of the Bilaterian phyla. Biological Reviews, 75:253295.Google Scholar
Burrett, C., and Richardson, R. 1980. Trilobite biogeography and Cambrian tectonic models. Tectonophysics, 63:155192.Google Scholar
Cawood, P. A., Mccausland, P. J. A., and Dunning, G. R. 2001. Opening Iapetus: constraints from the Laurentia margin in Newfoundland. Bulletin of the Geological Society of America, 113:443453.Google Scholar
Cocks, L. R. M., and Torsvik, T. H. 2002. Earth geography from 500 to 400 million years ago: a faunal and paleomagnetic review. Journal of the Geological Society, London, 159:631644.Google Scholar
Conway Morris, S. 2000. The Cambrian ‘explosion’: slow-fuse or megatonnage? Proceedings of the National Academy of Sciences, U. S. A., 97:44264429.Google Scholar
Dalziel, I. W. D. 1997. Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. Bulletin of the Geological Society of America, 190:1642.2.3.CO;2>CrossRefGoogle Scholar
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection; or the Preservation of Favored Races in the Struggle for Life (Reprinted 1st edition). Harvard University Press, Cambridge, MA, 502 p.Google Scholar
Darwin, C. 1872. On the Origin of Species by Means of Natural Selection; or the Preservation of Favored Races in the Struggle for Life (Reprinted 6th edition). Mentor, New York, 479 p.Google Scholar
Davidson, E. H., Peterson, K. J., and Cameron, R. A. 1995. Origin of bilaterian body plans: evolution of developmental regulatory mechanisms. Science, 270:13191325.Google Scholar
Debrenne, F., and Kruse, P. D. 1986. Shackleton Limestone archaeocyaths. Alcheringa, 10:235278.Google Scholar
Eldredge, N. 1986. Information, economics, and evolution. Annual Review of Ecology and Systematics, 17:351369.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, pp. 82115. In Schopf, T. J. M. (ed.) Models in Paleobiology. Freeman, Cooper, San Francisco, CA.Google Scholar
Evans, D. A. 1998. True polar wander, a supercontinental legacy. Earth and Planetary Science Letters, 157:18.Google Scholar
Evans, D. A. 2003. True polar wander and supercontinents. Tectonophysics, 362:303320.Google Scholar
Faill, R. T. 1997. A geologic history of the north-central Appalachians. Part 1. Orogenesis from the Mesoproterozoic through the Taconic Orogeny. American Journal of Science, 297:551619.Google Scholar
Fortey, R.A., and Cocks, L. R. M. 1992. The early Palaeozoic of the North Atlantic region as a test case for the use of fossils in continental reconstruction. Tectonophysics, 206:147158 Google Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnaean Society, 57:1333.Google Scholar
Gould, S. J. 1989. Wonderful Life. W. W. Norton, New York, 256 p.Google Scholar
Hall, J. 1862. Supplementary note to the thirteenth report of the Regents of the State Cabinet, p. 113119. 15th Annual Report of the New York Cabinet for Natural History, Albany, New York.Google Scholar
Hoffman, P. F. 1991. Did the breakout of Laurentia turn Gondwana inside out? Science, 252:14091412.Google Scholar
Harper, D. A. T., Macniocaill, C., and Williams, S. H. 1996. The palaeogeography of early Ordovician Iapetus terranes: an integration of faunal and palaeomagnetic constraints. Palaeogeography, Palaeoclimatology, and Palaeoecology, 121:297312.CrossRefGoogle Scholar
Hupé, P. 1953. Contributions à l'étude du Cambrien inférieur et du Précambrien III de l'Anti-Atlas marocain. Notes et Mémoires du Service Géologique (Morocco), 103:1402.Google Scholar
Jell, P. A. 1974. Faunal provinces and possible planetary reconstruction of the Middle Cambrian. Journal of Geology, 82:319350.Google Scholar
Karlstrom, K. E., Williams, M. L., Mclelland, J., Geissman, J. W., and åhäll, K. -I. 1999. Refining Rodinia: Geologic evidence for the Australia-Western U. S. connection in the Proterozoic. Geological Society of America Today, 9:17.Google Scholar
Kirschvink, J. L., Ripperdan, R. L., and Evans, D. A. 1997. Evidence for a large-scale reorganization of Early Cambrian continental masses by Inertial Interchange True Polar Wander. Science, 277:541545.CrossRefGoogle Scholar
Knoll, A. H. 1996. Daughter of time. Paleobiology, 22: 17.Google Scholar
Knoll, A. H. and Carroll, S. B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science, 284:21292137.Google Scholar
Li, Z.-X., Zhang, L., and Powell, C. Mca. 1996. Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodinia. Australasian Journal of Earth Sciences, 43:593604.Google Scholar
Lieberman, B. S. 1997. Early Cambrian paleogeography and tectonic history: a biogeographic approach. Geology, 25:10391042.Google Scholar
Lieberman, B. S. 1998. Cladistic analysis of the Early Cambrian olenelloid trilobites. Journal of Paleontology, 72:5978.CrossRefGoogle Scholar
Lieberman, B. S. 1999a. Testing the Darwinian legacy of the Cambrian radiation using trilobite phylogeny and biogeography. Journal of Paleontology, 73:176181.Google Scholar
Lieberman, B. S. 1999b. Systematic revision of the Olenelloidea (Trilobita, Cambrian). Bulletin of the Yale University Peabody Museum of Natural History, 45:1150.Google Scholar
Lieberman, B. S. 2000. Paleobiogeography: Using Fossils to Study Global Change, Plate Tectonics, and Evolution. Kluwer Academic Press/Plenum Publishing, New York, NY, 208 p.Google Scholar
Lieberman, B. S. 2001a. A test of whether rates of speciation were unusually high during the Cambrian radiation. Proceedings of the Royal Society of London, Biological Sciences, 268:17071714.Google Scholar
Lieberman, B. S. 2001b. Phylogenetic analysis of the Olenellina Walcott, 1890 (Trilobita, Cambrian). Journal of Paleontology, 75:96115.Google Scholar
Lieberman, B. S. 2002. Phylogenetic analysis of some basal early Cambrian trilobites, the biogeographic origins of the Eutrilobita, and the timing of the Cambrian radiation. Journal of Paleontology, 76:692708.Google Scholar
Lieberman, B. S. 2003a. Biogeography of the Trilobita during the Cambrian radiation: deducing geological processes from trilobite evolution. Special Papers in Palaeontology, 70:5972.Google Scholar
Lieberman, B. S. 2003b. Taking the pulse of the Cambrian radiation. Journal of Integrative and Comparative Biology, 43:229237.Google Scholar
Lieberman, B. S. and Eldredge, N. 1996. Trilobite biogeography in the Middle Devonian: geological processes and analytical methods. Paleobiology, 22:6679.Google Scholar
Mckerrow, W. S., Scotese, C. R., and Brasier, M. D. 1992. Early Cambrian continental reconstructions. Journal of the Geological Society, London, 149:599606.Google Scholar
Meert, J. G. 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, 362:140.Google Scholar
Meert, J. G. and Lieberman, B. S. 2004. A palaeomagnetic and palaeobiogeographical perspective on latest Neoproterozoic and Early Cambrian tectonic events. Journal of the Geological Society, London, 161:111.Google Scholar
Meert, J. G. and Van Der Voo, R. 1997. The assembly of Gondwana 800-550Ma. Journal of Geodynamics, 23:223235.Google Scholar
Meert, , Torsvik, J. G. T. H., Eide, E. A., and Dahlgren, S. 1998. Tectonic significance of the Fen Province, S. Norway: constraints from geochronology and paleomagnetism. Journal of Geology, 106:553564.Google Scholar
Moyes, A. B., Barton, J. M. Jr., and Groenewald, P. B. 1993. Late Proterozoic to Early Palaeozoic tectonism in Dronning Maud Land, Antarctica: supercontinental fragmentation and amalgamation. Journal of the Geological Society, London 150:833842.Google Scholar
Murphy, W., Eizirik, J. E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., De Jong, W. W., and Springer, M. S. 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294:23482351.Google Scholar
Peterson, K. J., and Takacs, C. M. 2002. Molecular clocks, snowball earth, and the Cambrian explosion. Society of Integrative and Comparative Biology Annual Meeting Final Program with Abstracts:341.Google Scholar
Peterson, K. J., Lyons, J. B., Nowak, K. S., Takacs, C. M., Wargo, M. J., and Mcpeek, M. A. 2004. Estimating metazoan divergence times with a molecular clock. Proceedings of the National Academy of Sciences, U.S.A., 101:65366541.Google Scholar
Powell, C. Mca. 1995. Are Neoproterozoic glacial deposits preserved on the margin of Laurentia related to fragmentation of two supercontinents? Geology, 23:10531054.Google Scholar
Powell, C. Mca., Mcelhinny, M. W., Meert, J. G., and Park, J. K. 1993. Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. Geology, 21:889892.Google Scholar
Prave, A. R. 1999. Two diamictites, two cap carbonates, two (13C excursions, two rifts: The Neoproterozoic Kingston Peak Formation, Death Valley, California. Geology, 27:339342.Google Scholar
Runnegar, B. 1982. A molecular-clock date for the origin of the animal phyla. Lethaia, 15:199205.Google Scholar
Scotese, C. 1997. Paleogeographic Atlas. PALEOMAP Project, University of Texas, Arlington, TX, 41 p.Google Scholar
Scotese, C., Boucot, A. J., and Mckerrow, W. S. 1999. Gondwanan palaeogeography and palaeoclimatology. Journal of African Earth Sciences, 28:99114.Google Scholar
Signor, P. W., and Lipps, J. H. 1992. Origin and early radiation of the Metazoa, pp. 323. In Lipps, J. H. and Signor, P. W. (eds.) Origin and Early Evolution of the Metazoa. Plenum Press, New York.Google Scholar
Swofford, D. L. 2001. PAUP. Phylogenetic Analysis Using Parsimony. Version 4.08b. Sinauer Associates, Sunderland, MA.Google Scholar
Torsvik, T. H., and Rehnström, E. F. 2001. Cambrian paleomagnetic data from Baltica: implications for true polar wander and Cambrian paleogeography. Journal of the Geological Society, London, 158:321329.Google Scholar
Torsvik, T. H., Smethurst, M. A., Meert, J. G., Van Der Voo, R., Mckerrow, W. S., Brasier, M. D., Sturt, B. A., and Walderhaug, H. J. 1996. Continental breakup and collision in the Neoproterozoic and Palaeozoic-A tale of Baltica and Laurentia. Earth-Science Reviews, 40:229258.Google Scholar
Unrug, R. 1996. The assembly of Gondwanaland. Episodes, 19:1120.Google Scholar
Unrug, R. 1997. Rodinia to Gondwana: the geodynamic map of Gondwana supercontinent assembly. Geological Society of America Today, 7:17.Google Scholar
Valentine, J. W. 2004. On the origin of phyla. Princeton University Press, Princeton.Google Scholar
Veevers, J. J., Walter, M. R., and Scheibner, E. 1997. Neoproterozoic tectonics of the Australia-Antarctica and Laurentia and the 560 Ma birth of the Pacific Ocean reflect the 400 m. y. Pangean supercycle. Journal of Geology, 105:225242.Google Scholar
Waggoner, B. 1999. Biogeographic analyses of the Ediacara biota: a conflict with paleotectonic reconstructions. Paleobiology, 25:440458.CrossRefGoogle Scholar
Walcott, C. D. 1910. Olenellus and other genera of the Mesonacidae. Smithsonian Miscellaneous Collections, 53(6):231422.Google Scholar
Wiley, E. O. 1988. Vicariance biogeography. Annual Review of Ecology and Systematics, 19:513542.Google Scholar
Wingate, M. T. D., Campbell, I. H., Compston, W., and Gibson, G. M. 1998. Ion microprobe U-Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Research, 87:135159.Google Scholar
Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep Precambrian divergences among Metazoan phyla. Science, 274:568573.Google Scholar
Xiao, S., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 351:553558.Google Scholar