Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T11:10:46.518Z Has data issue: false hasContentIssue false

Origins and relationships of Paleozoic coral groups and the origin of the Scleractinia

Published online by Cambridge University Press:  21 July 2017

William A. Oliver Jr.*
Affiliation:
U.S. Geological Survey (Emeritus) and Department of Paleobiology, U.S. National Museum of Natural History, MRC 137, Smithsonian Institution, Washington, D.C. 20560
Get access

Abstract

Two major groups of corals have essentially continuous records from the Early Ordovician (Tabulata) and Middle Ordovician (Rugosa) to the end of the Permian. A third major group, the living Scleractinia, range from Middle Triassic to Holocene. Additional groups have shorter ranges within the Paleozoic. The origins and relationships of these groups have been discussed for over 100 years. Relations between the Rugosa and Scleractinia have attracted the greatest interest because of their morphologic similarities and the time sequence. Arguments involve the significance of serial versus cyclic septal insertion, calcitic versus aragonitic skeletal mineralogy, and the time gap between the last rugosans and first scleractinians (there are no known Lower Triassic corals). Discussions of relationships among the various Paleozoic groups are commonly based on detailed morphological comparisons because of their overlapping stratigraphic ranges.

Recent work on the living corals and anemones supports a closer relationship between groups than is suggested by placing them in different orders or suborders. The paleontological record of “anemones” is slight, but it is reasonable to assume that one or more groups of skeletonless zoantharians persisted through long parts of the Phanerozoic. It is suggested that the major groups of zoantharian corals originated through the development of skeletons in various anemone groups at several different times.

Type
Research Article
Copyright
Copyright © 1996 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berkowski, B. 1995. Calyxocorallia, their relation to Heterocorallia and to Rugosa. Abstracts VII International Symposium on Fossil Cnidaria and Porifera, Madrid:6.Google Scholar
Chen, C. A., Odorico, D. M., Ten Lohuis, M., Veron, J. E. N., and Miller, D. J. 1995. Systematic relationships within the Anthozoa (Cnidaria: Anthozoa) using the 5′-end of the 28S rDNA. Molecular Phylogenetics and Evolution, 4:175183.Google Scholar
Coates, A. G., and Oliver, W. A. Jr. 1973. Coloniality in zoantharian corals, p. 327. In Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr. (eds.), Animal Colonies, Development and Function Through Time. Dowden, Hutchinson and Ross, Inc., Stroudsburg, Pennsylvania.Google Scholar
Copper, P. 1985. Fossilized polyps in 430-Myr-old Favosites corals. Nature, 316:142144.Google Scholar
Copper, P. and Plusquellec, Y. 1993. Ultrastructure of the walls, tabulae and “polyps” in Early Silurian Favosites from Anticosti Island, Canada. Courier Forschungsinstitut Senckenberg, 164:301308.Google Scholar
Cuif, J.-P. 1977. Arguments pour une relation phylétique entre les madréporaires paléozoïques et ceux du trias. Mémoires de la Société géologique de France, n.s., 129:154.Google Scholar
Cuif, J.-P. 1980. Microstructure versus morphology in the skeleton of Triassic scleractinian corals. Acta Paleontologica Polonica, 25:361374.Google Scholar
Debrenne, F. M., Gangloff, R. A., and Lafuste, J. G. 1987. Tabulaconus Handfield: microstructure and its implication in the taxonomy of primitive corals. Journal of Paleontology, 61:19.Google Scholar
Den Hartog, J. C. 1980. Caribbean shallow water Corallimorpharia. Zoologische Verhandelingen (Leiden), 176:183.Google Scholar
Duerden, J. E. 1902. Relationships of the Rugosa (Tetracoralla) to the living Zoantheae. Johns Hopkins University Circular, 21:1925.Google Scholar
Ezaki, Y. 1989. Morphological and phylogenetic characteristics of Late Permian rugose corals in Iran. Memoirs of the Association of Australasian Palaeontologists, 8:275281.Google Scholar
Ezaki, Y. 1991. Permian corals from Abadeh and Julfa, Iran, West Tethys. Journal of the Faculty of Science, Hokkaido University 23:53146.Google Scholar
Ezaki, Y. 1993. The last representatives of Rugosa in Abadeh and Julfa, Iran: survival and extinction. Courier Forschungsinstitut Senckenberg, 164:7580.Google Scholar
Fautin, D. G., and Lowenstein, J. M. 1992. Phylogenetic relationships among scleractinians, actinians, and corallimorpharians (Coelenterata: Anthozoa), p. 665670. In Proceedings of the Seventh International Coral Reef Symposium, 2. Guam.Google Scholar
Fedorowski, J. 1989. Extinction of Rugosa and Tabulata near the Permian/Triassic boundary. Acta Palaeontologica Polonica, 34:4770.Google Scholar
Fedorowski, J. 1991a. Principles of early ontogeny in the rugose corals: a critical review. Hydrobiologia, 216/217:413418.Google Scholar
Fedorowski, J. 1991b. Dividocorallia, a new subclass of Palaeozoic Anthozoa. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, 61: 21105.Google Scholar
Finks, R. M. 1986. “Spicules” in Thamnopora. Fossil Cnidaria, 15(1.2):22.Google Scholar
Flower, R. H. 1961. Montoya and related colonial corals. Memoir, New Mexico State Bureau of Mines and Mineral Resources, 7:1124.Google Scholar
Flügel, E. 1994. Pangean shelf carbonates: controls and paleoclimatic significance of Permian and Triassic reefs, p. 247266. In Klein, G. D. (ed.), Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith and Breakup of a Supercontinent. Geological Society of America Special Paper 288.Google Scholar
Flügel, H. W. 1975. Skelettentwicklung, Ontogenie und Funktionsmorphologie rugoser Korallen. Paläontologische Zeitschrift, 49:407425.Google Scholar
Flügel, H. W. 1980. Einige Notizen zur Phylogenie der Rugosa. Annales Naturhistoriches Museum Wien, 83:7382.Google Scholar
Flügel, H. W. 1985. Abstammung und systematische Stellung der Rugosa und Auloporida. Paläontologische Zeitschrift, 59:201210.Google Scholar
Frech, F. 1890. Die Korallenfauna der Trias. Palaeontcgraphica, 37:1116.Google Scholar
Fuller, M. K., and Jenkins, R. J. F. 1994. Moorowipora chamberensis, a coral from the Early Cambrian Moorowie Formation, Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia, 118:227235.Google Scholar
Hand, C. 1966. On the evolution of the Actiniaria, p. 135146. In Rees, W. J. (ed.), The Cnidaria and their Evolution. Symposia of the Zoological Society of London, 16.Google Scholar
Hill, D. 1956. Rugosa, p. F233324. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part F, Coelenterata, Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Hill, D. 1960. Possible intermediates between Alcyonaria [and] Tabulata, Tabulata and Rugosa, and Rugosa and Hexacoralla. International Geological Congress, 21st Session, Copenhagen, 22:5158.Google Scholar
Hill, D. 1981. Rugosa and Tabulata, In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Part F, Coelenterata, Supplement 1 (2 vols.), Geological Society of America and University of Kansas Press, Lawrence, Kansas, 762 p.Google Scholar
Hill, D. and Stumm, E. C. 1956. Tabulata, p. F444F477. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Hyman, L. H. 1940. The Invertebrates: Protozoa Through Ctenophora. McGraw-Hill Book Co., New York, 726 p.Google Scholar
Iljina, T. G. 1965. Tetracorals from the Upper Permian and Lower Triassic of Zakavkaz'ya. Academy of Sciences of the USSR, Transactions of the Paleontological Institut, 107:1105. (In Russian.) Google Scholar
Iljina, T. G. 1983. On the origin of the Scleractinia. Paleontological Journal, 1983(1):1023.Google Scholar
Iljina, T. G. 1984. The historical development of corals: suborder Polycoeliina. Academy of Sciences of the USSR, Transactions of the Paleontological Institute, 198:1184. (In Russian.) Google Scholar
Jell, J. S. 1984. Cambrian cnidarians with mineralized skeletons. Paleontographica Americana, 54:105109.Google Scholar
Jell, P. A., and Jell, J. S. 1976. Early Middle Cambrian corals from western New South Wales. Alcheringa, 1:181195.CrossRefGoogle Scholar
Kazmierczak, J. 1984. Favositid tabulates: evidence for poriferan affinity. Science, 225:835837.Google Scholar
Kim, A. I. 1974. On the phylogeny and systematical position of some tabulatomorpha, p. 118122. In Sokolov, B. S. (ed.), Ancient Cnidaria, 1. Publishing House “Nauka,” Siberian Branch, Novosibirsk. (In Russian.) Google Scholar
Kummel, B. 1973. Aspects of the Lower Triassic (Scythian) Stage. Canadian Society of Petroleum Geologists Memoir, 2:557571.Google Scholar
Lafuste, J. Debrenne, F. Gandin, A., and Gravestock, D. 1991. The oldest tabulate coral and the associated Archeocyatha, Lower Cambrian, Flinders Ranges, South Australia. Geobios, 24:697718.Google Scholar
Laub, R. S. 1984. Lichenaria Winchell & Schuchert, 1895, Lamottia Raymond, 1924 and the early history of the tabulate corals. Palaeontographica Americana, 54:159163.Google Scholar
Montanaro-Gallitelli, E. 1975. Hexanthiniaria, a new order of Zoantharia (Anthozoa, Coelenterata. Bollettino della Società Geologica Italiana, 14:3539.Google Scholar
Neuman, B. E. E. 1984. Origin and early evolution of rugose corals. Palaeontographica Americana, 54:119126.Google Scholar
Neuman, B. E. E. 1991. Origin and early evolution of rugose corals. Geologiska föreningens i Stockholm förhandlingar, 113:9091.Google Scholar
Oliver, W. A. Jr. 1979. Sponges they are not (Review). Paleobiology, 5:188190.Google Scholar
Oliver, W. A. Jr. 1980a. The relationship of the scleractinian corals to the rugose corals. Paleobiology, 6:146160.Google Scholar
Oliver, W. A. Jr. 1980b. On the relationship between rugosa and scleractinia (summary). Acta Paleontologica Polonica, 25:395402.Google Scholar
Oliver, W. A. Jr. 1986. Favositids are corals-further remarks. Fossil Cnidaria, 15(1.2):1921.Google Scholar
Oliver, W. A. Jr. and Coates, A. G. 1987. Phylum Cnidaria, p. 140193. In Boardman, R. S., Cheethm, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Scientific Publications, Palo Alto.Google Scholar
Railsback, L. B., and Anderson, T. F. 1987. Control of Triassic seawater chemistry and temperature in the evolution of post-Paleozoic aragonite-secreting faunas. Geology, 15:10021005.2.0.CO;2>CrossRefGoogle Scholar
Romano, S. L. 1995. Evolution of two architectural strategies among scleractinian corals inferred from phylogenetic analysis of DNA sequences. Abstracts VII International Symposium on Fossil Cnidaria and Porifera, Madrid:77.Google Scholar
Romano, S. L. and Palumbi, S. R. 1996. Evolution of scleractinian corals inferred from molecular systematics. Science, 271:640642.Google Scholar
Roniewicz, E., and Morycowa, E. 1993. Evolution of the Scleractinia in the light of microstructural data. Courier Forschungsinstitut Senckenberg, 164:233240.Google Scholar
Sandberg, P. A. 1975. New interpretations of Great Salt Lake ooids and of ancient non-skeletal carbonate mineralogy. Sedimentology, 22:497537.Google Scholar
Savarese, M., Mount, J. F., and Sorauf, J. E. 1993. Paleobiologic and paleoenvironmental context of coral-bearing Early Cambrian reefs: implications for Phanerozoic reef development. Geology, 21:917920.Google Scholar
Schindewolf, O. H. 1942. Zur Kenntnis der Polycoelien und Plerophyllen. Eine Studie über den Bau der “Tetrakorallen” und ihre Beziehungen zu den Madreporarien. Abhandlungen des Reichsamts für Bodenforschung, n.s. 204:1324.Google Scholar
Schmidt, H. 1974. On evolution in the Anthozoa, p. 533560. In Proceedings of the Second International Symposium on Coral Reefs, 1. Great Barrier Reef Committee, Brisbane.Google Scholar
Scrutton, C. T. 1979. Early fossil cnidarians, p. 161207. In House, M. R. (ed.), The Origin of Major Invertebrate Groups. Academic Press, London and New York.Google Scholar
Scrutton, C. T. 1984. Origin and early evolution of tabulate corals. Palaeontographica Americana, 54:110118.Google Scholar
Scrutton, C. T. 1987. A review of favositid affinities. Palaeontology, 30:485492.Google Scholar
Scrutton, C. T. 1990. Ontogeny and astogeny in Aulopora and its significance, illustrated by a new non-encrusting species from the Devonian of southwest England. Lethaia, 23:6175.Google Scholar
Scrutton, C. T. 1992. Flindersipora bowmani Lafuste, and the early evolution of the tabulate corals. Fossil Cnidaria and Porifera, 21(2):2933.Google Scholar
Scrutton, C. T. 1993. A new kilbuchophyllid coral from the Ordovician of the Southern Uplands, Scotland. Courier Forschungsinstitut Senckenberg, 164:153158.Google Scholar
Scrutton, C. T. and Clarkson, E. N. K. 1991. A new scleractinian-like coral from the Ordovician of the Southern Uplands, Scotland. Palaeontology, 34:179194.Google Scholar
Sokolov, B. S. 1962. Class Anthozoa, Subclass Tabulata, p. 192265. In Orlov, U. A. (ed.), Fundamentals of Paleontology, 2, Porifera, Archaeocyatha, Coelenterata, Vermes. Academy of Sciences of the USSR, Moscow. (In Russian; English translation, 1971.) Google Scholar
Sorauf, J. E., and Savarese, M. 1995. A Lower Cambrian coral from South Australia. Palaeontology, 38:757770.Google Scholar
Stanley, G. D. Jr. 1988. The history of early Mesozoic reef communities: a three-step process. Palaios, 3:170183.Google Scholar
Stel, J. H. 1978. Studies on the Paleobiology of Favositids. Stabo/All-Round, B.V., Groningen, Netherlands, 246 p.Google Scholar
Stolarski, J. 1993. Ontogenetic development and functional morphology in the early growth stages of Calceola sandalina (Linnaeus, 1771). Courier Forschungsinstitut Senckenberg, 164:169177.Google Scholar
Sytova, V. A. 1977. On the origin of rugose corals. Mémoirs du Bureau de Recherches Géeologique et Minières, 89:6568.Google Scholar
Sytova, V. A. 1980. The origin and taxonomic rank of rugose corals. Paleontological Journal, 1980(1):15 (in English language edition; p. 14–19 in Russian edition).Google Scholar
Veron, J. E. N. 1995. Corals in Space and Time. University of New South Wales Press, Sydney, N.S.W., Australia, 321 p.Google Scholar
Veron, , Odorico, J. E. N. D. M., Chen, C. A., and Miller, D. J. 1996. Reassessing evolutionary relationships of scleractinian corals. Coral Reefs, 15:19.Google Scholar
Wells, J. W. 1956. Scleractinia, p. F328444. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Wells, J. W. and Hill, D. 1956. Anthozoa–general features, p. F161165, and Zoantharia–general features, p. F231-233. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Wendt, J. 1989. Tetradiidae - first evidence of aragonitic mineralogy in tabulate corals. Paläontologische Zeitschrift, 63:177181.Google Scholar
Wendt, J. 1990. The first aragonitic rugose coral. Journal of Paleontology, 64:335340.Google Scholar
West, R. R., and Clark, G. R. Ii. 1984. Paleobiology and biological affinities of Palaeozoic chaetetids. Palaeontographica Americana, 54:337348.Google Scholar
Weyer, D. 1972. Zur Morphologie der Rugosa (Pterocorallia). Geologie, 21:710737.Google Scholar
Weyer, D. 1980. Die älteste Rugose Koralle Europas. Wissenschaftliche Beiträge der Martin-Luther-Universität Halle-Wittenberg, 1978/30 (P7):5177.Google Scholar
Wilkinson, B. H. 1979. Biomineralization, paleoceanography, and the evolution of calcareous marine organisms. Geology, 7:524527.Google Scholar
Wrzolek, T. 1993. Affinities of the Heterocorallia. Acta Paleontologica Polonica, 38:119120.Google Scholar
Zhuravlev, A. Y., Debrenne, F., and Lafuste, J. 1993. Early Cambrian microstructural diversification of Cnidaria. Courier Forschungsinstitut Senckenberg, 164:365372.Google Scholar