Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T06:16:24.463Z Has data issue: false hasContentIssue false

Konservat-Lagerstätten 40 Years On: The Exceptional Becomes Mainstream

Published online by Cambridge University Press:  21 July 2017

Derek E. G. Briggs*
Affiliation:
Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, CT 06520 USA
Get access

Abstract

Since Dolf Seilacher coined the term Konservat-Lagerstätten in 1970, these deposits have migrated from the margins to the mainstream of paleontological research. With greater understanding of the controls on their occurrence, new examples of exceptional preservation continue to be discovered. They provide critical data for phylogenies and stratigraphic ranges. Together with molecular data, they calibrate the history of many infrequently preserved taxa. Ostracods, tiny crustaceans with a biomineralized carapace, illustrate the importance of recent discoveries in Konservat-Lagerstätten. The rare examples with fossilized appendages are preserved in a diversity of ways, organically or through authigenic mineralization. They confirm that ostracods were present at least by the late Ordovician, provide evidence of relationships obscured by the morphology of the routinely preserved valves, and extend the stratigraphic range of particular groups. They reveal extraordinary features of the soft-tissue anatomy of ostracods, including reproductive morphology and strategy. While other taxa would provide equally compelling examples of research progress, it is clear that the concept of exceptional preservation is expanding. Future discoveries and new analytical methods will match the reconstruction of coloration in feathered dinosaurs, for example, for unexpected novelty.

Type
Research Article
Copyright
Copyright © 2014 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartels, C., Briggs, D. E. G., and Brassel, G. 1998. Fossils of the Hunsrück Slate—Marine Life in the Devonian. Cambridge University Press, Cambridge.Google Scholar
Bate, R. H. 1972. Phosphatized ostracods with appendages from the Lower Cretaceous of Brazil. Palaeontology, 15:379393.Google Scholar
Bengtson, S., Cunningham, J. A., Yin, C.-Y., and Donoghue, P. C. J. 2012. A merciful death for the “earliest bilaterian,” Vernanimalcula . Evolution & Development, 14:421427. doi:10.1111/j.1525-142X.2012.00562.x CrossRefGoogle ScholarPubMed
Briggs, D. E. G. 2001. Exceptionally preserved fossils, p. 328332. In Briggs, D. E. G. and Crowther, P. R. (eds.), Paleobiology II. Blackwell Science, Oxford.CrossRefGoogle Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences, 31:275301. doi:10.1146/annurev.earth.31.100901.144746 CrossRefGoogle Scholar
Briggs, D. E. G. 2013. A mosquito's last supper reminds us not to underestimate the fossil record. Proceedings of the National Academy of Sciences, 110:1835318354. doi:10.1073/pnas.1319306110 CrossRefGoogle Scholar
Briggs, D. E. G. 2014. Paleontology: A new Burgess Shale fauna. Current Biology, 24:R398R400. doi:10.1016/j.cub.2014.04.010 CrossRefGoogle ScholarPubMed
Briggs, D. E. G., Moore, R. A., Shultz, J. W., and Schweigert, G. 2005. Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany. Proceedings of the Royal Society B-Biological Sciences, 272:627632. doi:10.1098/rspb.2004.3006 CrossRefGoogle ScholarPubMed
Briggs, D. E. G., Siveter, D. J., and Siveter, D. J. 1996. Soft-bodied fossils from a Silurian volcaniclastic deposit. Nature, 382:248250. doi:10.1038/382248a0 CrossRefGoogle Scholar
Briggs, D. E. G., Siveter, D. J., Siveter, D. J., and Sutton, M. D. 2008. Virtual fossils from 425 million-year-old volcanic ash. American Scientist, 96:474481. doi:10.1511/2008.75.474 CrossRefGoogle Scholar
Briggs, D. E. G., and Summons, R. E. 2014. Ancient biomolecules: their origin, fossilization and significance in revealing the history of life. Bioessays, 36:482490. doi:10.1002/bies.201400010 CrossRefGoogle Scholar
Budd, G. E. 2001. Ecology of nontrilobite arthropods and lobopods in the Cambrian, p. 404427. In Zhuravlev, A. Y. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Budd, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417:271275. doi:10.1038/417271a CrossRefGoogle Scholar
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology, 16:272286.CrossRefGoogle Scholar
Butterfield, N. J., and Harvey, T. H. P. 2012. Small carbonaceous fossils (SCFs): A new measure of early Paleozoic paleobiology. Geology, 40:7174. doi:10.1130/G32580.1 CrossRefGoogle Scholar
Caron, J-B., Gaines, R. R., Aria, C., Gabriela Mángano, M., and Streng, M. 2014. A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies. Nature Communications, 5:16. doi:10.1038/ncomms4210 CrossRefGoogle ScholarPubMed
Cody, G. D., Gupta, N. S., Briggs, D. E. G., Kilcoyne, A. L. D., Summons, R. E., Kenig, F., Plotnick, R. E., and Scott, A. C. 2011. Molecular signature of chitin-protein complex in Paleozoic arthropods. Geology, 39:255258. doi:10.1130/G31648.1 CrossRefGoogle Scholar
Colleary, C., and Vinther, J. 2013. A statistical and mass spectrometric characterization of the molecular preservation of melanin. Palaeontological Association Newsletter, 58th Annual Meeting Programme and Abstracts, 84:68.Google Scholar
Cong, P.-Y., Ma, X.-Y., Hou, X.-G., Edgecombe, G. D., and Strausfeld, N. J. 2014. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature, doi:10.1038/nature13486.CrossRefGoogle Scholar
Cressey, R., and Boxshall, G. 1989. Kabatarina pattersoni, a fossil parasitic copepod (Dichelesthiidae) from a Lower Cretaceous fish. Micropaleontology, 35:150167. doi:10.2307/1485466 CrossRefGoogle Scholar
Creveling, J. R., Johnston, D. T., Poulton, S. W., Kotrc, B., Maerz, C., Schrag, D. P., and Knoll, A. H. 2014. Phosphorus sources for phosphatic Cambrian carbonates. Geological Society of America Bulletin, 126:145163. doi:10.1130/B30819.1 CrossRefGoogle Scholar
Cunningham, J. A., Donoghue, P. C. J., and Bengtson, S. 2014. Distinguishing biology from geology in soft-tissue preservation, p. 275287. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334:10911096. doi:10.1126/science.1206375 CrossRefGoogle ScholarPubMed
Erwin, D. H., and Valentine, J. W. 2013. The Cambrian Explosion: The Construction of Animal Biodiversity. Roberts and Company, Colorado.Google Scholar
Farrell, Ú. C. 2014. Pyritization of soft tissues in the fossil record: an overview, p. 3557. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Farrell, Ú. C., Martin, M. J., Hagadorn, J. W., Whiteley, T., and Briggs, D. E. G. 2009. Beyond Beecher's Trilobite Bed: Widespread pyritization of soft-tissues in the Late Ordovician Taconic Foreland Basin. Geology, 37:907910. doi:10.1130/G30177A.1 CrossRefGoogle Scholar
Gaines, R. R. 2014. Burgess Shale-type preservation and its distribution in space and time, p. 123146. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Gaines, R. R., Briggs, D. E. G., and Zhang, Y.-L. 2008. Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology, 36:755758. doi:10.1130/G24961A.1 CrossRefGoogle Scholar
Gaines, R. R., Droser, M. L., Orr, P. J., Garson, D., Hamarlund, E. U., Qi, C., and Canfield, D. 2012a. Burgess Shale-type biotas were not entirely burrowed away. Geology, 40:283286. doi:10.1130/G32555.1 CrossRefGoogle Scholar
Gaines, R. R., Hammarlund, E. U., Hou, X.-G., Qi, C.-S., Gabbott, S. E., Zhao, Y.-L., Peng, J., and Canfield, D. E. 2012b. Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Sciences of the United States of America, 109:51805184. doi:10.1073/pnas.1111784109 CrossRefGoogle ScholarPubMed
Glass, K., Ito, S., Wilby, P. R., Sota, T., Nakamura, A., Bowers, C. R., Miller, K. E., Dutta, S., Summons, R. E., Briggs, D. E. G., Wakamatsu, K., and Simon, J. D. 2013. Impact of diagenesis and maturation on the survival of eumelanin in the fossil record. Organic Geochemistry, 64:2937. doi:10.1016/j.orggeochem.2013.09.002 CrossRefGoogle Scholar
Glass, K., Ito, S., Wilby, P. R., Sota, T., Nakamura, A., Bowers, C. R., Vinther, J., Dutta, S., Summons, R., Briggs, D. E. G., Wakamatsu, K., and Simon, J. D. 2012. Direct chemical evidence for undegraded eumelanin pigment from the Jurassic Period. Proceedings of the National Academy of Sciences of the United States of America, 109:10218–23. doi:10.1073/pnas.1118448109.Google Scholar
Greenwalt, D., Goreva, Y., Siljeström, S., Rose, T., and Harbach, R. E. 2013. Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito. Proceedings of the National Academy of Sciences of the United States of America, 110:1849618500. doi:10.1073/pnas.1310885110 CrossRefGoogle Scholar
Grimes, S. T., Davies, K. L., Butler, I. B., Brock, F., Edwards, D., Rickard, D., Briggs, D. E. G., and Parkes, R. J. 2002. Fossil plants from the Eocene London Clay: The use of pyrite textures to determine the mechanism of pyritisation. Journal of the Geological Society, 159:493501.CrossRefGoogle Scholar
Gupta, N. S., and Briggs, D. E. G. 2011. Taphonomy of animal organic skeletons through time, p. 199221. In Allison, P. and Bottjer, D. J. (eds.) Taphonomy: Process and Bias through Time. Topics in Geobiology 32, Springer Science +Business Media. doi:10.1007/978-90-481-8643-3_1 CrossRefGoogle Scholar
Harvey, T. H. P., Velez, M. I., and Butterfield, N. J. 2012. Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation. Proceedings of the National Academy of Sciences of the United States of America, 109:1589–94. doi:10.1073/pnas.1115244109 Google ScholarPubMed
Hof, C. H. J., and Briggs, D. E. G. 1997. Decay and mineralization of mantis shrimps (Stomatopoda: Crustacea)—a key to their fossil record. PALAIOS, 12:420438. doi:10.1043/0883-1351(1997)012<0420:DAMOMS>2.0.CO;2 CrossRefGoogle Scholar
Hou, X.-G., Williams, M., Siveter, D. J., Siveter, D. J., Aldridge, R. J., and Sansom, R. S. 2010. Soft-part anatomy of the Early Cambrian bivalved arthropods Kunyangella and Kunmingella: significance for the phylogenetic relationships of Bradoriida. Proceedings of the Royal Society of London B-Biological Sciences, 277:18351841. doi: 10.1098/rspb.2009.2194 CrossRefGoogle ScholarPubMed
Ikeya, N., Tsukagoshi, A., and Horne, D. J. 2005. Preface: the phylogeny, fossil record and ecological diversity of ostracod crustaceans, p. viixiii. In Ikeya, N., Tsukagoshi, A., and Horne, D. J. (eds.) Evolution and Diversity of Ostracoda, Special Issue Hydrobiologia, 538. doi:10.1007/s10750-004-4914-z CrossRefGoogle Scholar
Keyser, D., and Weitschat, W. 2005. First record of ostracods (Crustacea) in Baltic amber, p. 108114. In Ikeya, N., Tsukagoshi, A., and Horne, D. J. (eds.) Evolution and Diversity of Ostracoda, Special Issue, Hydrobiologia 538. doi:10.1007/s10750-004-5941-5 CrossRefGoogle Scholar
Kühl, G., Briggs, D. E. G., and Rust, J. 2009. A great-appendage arthropod with a radial mouth from the Lower Devonian Hunsrück Slate, Germany. Science, 323:771773. doi:10.1126/science.1166586 CrossRefGoogle ScholarPubMed
Legg, D. A., Sutton, M. D., and Edgecombe, G. D. 2013. Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nature Communications, 4:2485 doi:10.1038/ncomms3485 CrossRefGoogle ScholarPubMed
Li, Q., Gao, K.-Q., Vinther, J., Shawkey, M. D., Clarke, J. A., D'Alba, L., Meng, Q.-J., Briggs, D. E. G., Prum, R. O. 2010. Plumage color patterns of an extinct dinosaur. Science, 327:1369–72. doi:10.1126/science.1186290 CrossRefGoogle ScholarPubMed
Lindgren, J., Sjövall, P. P., Carney, R. M., Uvdal, P., Gren, J. A., Dyke, G., Shultz, B. P., Shawkey, M. D., Barnes, K. R., and Polcyn, M. J. 2014. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature, 506:484488. doi:10.1038/nature 12899 CrossRefGoogle ScholarPubMed
Lindgren, J., Uvdal, P., Sjövall, P., Nilsson, D. E., Engdahl, A., Schultz, B. P., Thiel, V. 2012. Molecular preservation of the pigment melanin in fossil melanosomes. Nature Communications, 3:824. doi:10.1038/ncomms1819 CrossRefGoogle ScholarPubMed
Ma, X.-Y., Cong, P.-Y., Hou, X.-G., Edgecombe, G. D., and Strausfeld, N. J. 2014. An exceptionally preserved arthropod cardiovascular system from the early Cambrian. Nature Communications, 5:3560. doi:10.1038/ncomms4560 CrossRefGoogle ScholarPubMed
Ma, X.-Y, Hou, X.-G., Edgecombe, G-D., and Strausfeld, N. J. 2012. Complex brain and optic lobes in an early Cambrian arthropod. Nature, 490:258261. doi:10.1038/nature11495 CrossRefGoogle Scholar
Maas, A., Waloszek, D., and Müller, K. J. 2003. Morphology, ontogeny and phylogeny of the Phosphatocopina (Crustacea) from the Upper Cambrian “Orsten” of Sweden. Fossils and Strata, 49:1238.CrossRefGoogle Scholar
Matzke-Karasz, R., Horne, D. C., Janz, H., Griffiths, H. I., Hutchinson, W. F., and Preece, R. C. 2001. 5,000 year-old spermatozoa in Quaternary Ostracoda (Crustacea). Naturwissenschaften, 88:268272. doi:10.1007/s001140100234.CrossRefGoogle Scholar
Matzke-Karasz, R., Smith, R. J., Symonová, R., Miller, C. G., and Tafforeau, P. 2009. Sexual intercourse involving giant sperm in Cretaceous ostracode. Science, 324:1535. doi: 10.1126/science.1173898 CrossRefGoogle ScholarPubMed
Matzke-Karasz, R., Neil, J. V., Smith, R. J., Symonová, R., Morkovsky, L., Archer, M., Hand, S. J., Cloetens, P., and Tafforeau, P. 2014. Subcellular preservation in giant ostracod sperm from an early Miocene cave deposit in Australia. Proceedings of the Royal Society of London B-Biological Sciences, 281:20140394. doi:10.1098/rspb.2014.0394 CrossRefGoogle ScholarPubMed
McAlpine, J. F., and Martin, J. E. H. 1969. Canadian amber—A paleontological treasure-chest. The Canadian Entomologist, 101:819838. doi:10.4039/Ent101819-8 CrossRefGoogle Scholar
McNamara, M. E. 2013. The taphonomy of colour in fossil insects and feathers. Palaeontology, 56:557575. doi: 10.1111/pala.12044 CrossRefGoogle Scholar
McNamara, M. E., Briggs, D. E. G., Orr, P. J., Wedmann, S., Noh, H., and Cao, H. 2011. Fossilized biophotonic nanostructures reveal the original colors of 47 million-year-old moths. PloS Biology, 9(11):e1001200. doi:10.1371/journal.pbio.1001200 CrossRefGoogle ScholarPubMed
McNamara, M. E., Briggs, D. E. G., Orr, P. J., Wedmann, S., Noh, H., and Cao, H. 2012. The original colours of fossil beetles. Proceedings of the Royal Society of London B-Biological Sciences, 279:11141121. doi: 10.1098/rspb.2011.1677 CrossRefGoogle ScholarPubMed
Müller, K. J., and Walossek, D. 1985. A remarkable arthropod fauna from the Upper Cambrian “Orsten” of Sweden. Transactions of the Royal Society of Edinburgh, Earth Sciences, 76:161172. doi:10.1017/S0263593300010427 CrossRefGoogle Scholar
Nudds, J. R., and Selden, P. A. 2008. Fossil Ecosystems of North America. University of Chicago Press, Chicago.Google Scholar
Oakley, T. H., Wolfe, J. M., Lindgren, A. R., and Zaharoff, A. K. 2012. Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement, and pancrustacean phylogeny. Molecular Biology and Evolution, 30:215233. doi:10.1093/molbev/mss216 CrossRefGoogle ScholarPubMed
Orr, P. J. 2014. Late Proterozoic–Early Phanerozoic ‘taphonomic windows’: the environmental and temporal distribution of recurrent modes of exceptional preservation, p. 289313. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Orr, P. J., Briggs, D. E. G., Siveter, D. J., and Siveter, D. J. 2000. Three-dimensional preservation of a non-biomineralized arthropod in concretions in Silurian volcaniclastic rocks from Herefordshire, England. Journal of the Geological Society, 157:173186. doi:10.1144/jgs.157.1.173 CrossRefGoogle Scholar
Palmer, T. J., Taylor, P. D., and Todd, J. A. 1993. Epibiont shadowing: a hitherto unrecognized way of preserving soft-bodied fossils. Terra Nova, 5:568572. doi:10.1111/j.1365-3121.1993.tb00307.x CrossRefGoogle Scholar
Park, L. E. 1995. Geochemical and paleoenvironmental analysis of lacustrine arthropod-bearing concretions of the Barstow Formation, southern California. PALAIOS, 10:4457. doi:10.2307/3515006 CrossRefGoogle Scholar
Park, L. E., and Downing, K. F. 2001. Paleoecology of an exceptionally preserved arthropod fauna from lake deposits of the Miocene Barstow Formation, southern California, USA. PALAIOS, 16:175184.2.0.CO;2>CrossRefGoogle Scholar
Petryshyn, V. A., Bottjer, D. J., Chen, J.-Y., and Gao, F. 2013. Petrographic analysis of new specimens of the putative microfossil Vernanimalcula guizhouena (Doushantuo Formation, South China). Precambrian Research, 225:5866. doi:10.1016/j.precamres.2011.08.003 CrossRefGoogle Scholar
Poinar, G. O. 1992. Life in Amber. Stanford University Press, Palo Alto, California.CrossRefGoogle Scholar
Raff, E. C., Andrews, M. E., Turner, F. R., Toh, E., Nelson, D. E., and Raff, R. A. 2013. Contingent interactions among biofilm-forming bacteria determine preservation or decay in the first steps toward fossilization of marine embryos. Evolution & Development, 15:243256. doi:10.1111/ede.12028 CrossRefGoogle ScholarPubMed
Raff, E. C., Schollaert, K. L., Nelson, D. E., Donoghue, P. C. J., Thomas, C-W., Turner, F. R., Stein, B. D., Dong, X-P., Bengtson, S., Huldtgren, T., Stampanoni, M., Chongyu, Y., and Raff, R. A. 2008. Embryo fossilization is a biological process mediated by microbial films. Proceedings of the National Academy of Sciences of the United States of America, 105:1936019365. doi:10.1073/pnas.0810106105 CrossRefGoogle Scholar
Raff, R. A., and Raff, E. C. 2014. The role of biology in the fossilization of embryos and other soft-bodied organisms: Microbial biofilms and Lagerstätten. p. 83100. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Sansom, R. S., Gabbott, S. E., and Purnell, M. A. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463:797800. doi:10.1038/nature08745 CrossRefGoogle ScholarPubMed
Sansom, R. S., Gabbott, S. E., and Purnell, M. A. 2013. Atlas of vertebrate decay: A visual and taphonomic guide to fossil interpretation. Palaeontology, 56:457474. doi:10.1111/pala.12037 CrossRefGoogle Scholar
Schiffbauer, J. D., Wallace, A. F., Broce, J., and Xiao, S. 2014. Exceptional fossil conservation through phosphatization, p. 5982. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Schiffbauer, J. D., Xiao, S., Sen Sharma, K., and Wang, G. 2012. The origin of intracellular structures in Ediacaran metazoan embryos. Geology, 40:223226. doi:10.1130/G32546.1 CrossRefGoogle Scholar
Schmidt, R. A. M., and Sellmann, P. V. 1966. Mummified Pleistocene ostracods in Alaska. Science, 153:167168. doi:10.1126/science.153.3732.167 CrossRefGoogle ScholarPubMed
Scotese, C. R. 2001. Atlas of Earth History, Volume 1, Paleogeography, PALEOMAP Project, Arlington, Texas.Google Scholar
Selden, P., and Nudds, J. 2012. Evolution of Fossil Ecosystems (2nd edition). Academic Press (Elsevier), London.CrossRefGoogle Scholar
Seilacher, A. 1970. Begriff und Bedeutung der Fossil-Lagerstätten, Neues Jahrbuch für geologie und Paläontologie, Monatshefte, 1970:3439.Google Scholar
Seilacher, A. 1990. Taphonomy of Fossil-Lagerstätten: overview, p. 266270. In Briggs, D. E. G. and Crowther, P. R. (eds.) Paleobiology—A Synthesis. Blackwell Scientific Publications, Oxford. doi:10.1111/j.1365-3121.1991.tb00850.x Google Scholar
Seilacher, A., Reif, W.-E., and Westphal, F. 1985. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society of London B-Biological Sciences, 311:523. doi:10.1098/rstb.1985.0134 Google Scholar
Siveter, D. J. 2008. Ostracods in the Palaeozoic? Senckenbergiana Lethaia, 88:19. doi:10.1007/BF03043973 CrossRefGoogle Scholar
Siveter, D. J., Briggs, D. E. G., Siveter, D. J., and Sutton, M. D. 2010. An exceptionally preserved myodocopid ostracod from the Silurian of Herefordshire, UK. Proceedings of the Royal Society of London B-Biological Sciences, 277:15391544. doi:10.1098/rspb.2009.2122 CrossRefGoogle ScholarPubMed
Siveter, D. J., Briggs, D. E. G., Siveter, D. J., Sutton, M. D., and Joomun, S. C. 2013. A Silurian myodocope with preserved soft-parts: cautioning the interpretation of the shell-based ostracod record. Proceedings of the Royal Society of London B-Biological Sciences, 280:20122664. doi:10.1098/rspb.2012.2664 CrossRefGoogle ScholarPubMed
Siveter, D. J., Siveter, D. J., Sutton, M. D., and Briggs, D. E. G. 2007. Brood care in a Silurian ostracod. Proceedings of the Royal Society of London B-Biological Sciences, 274:465469. doi:10.1098/rspb.2006.3756 CrossRefGoogle Scholar
Siveter, D. J., Sutton, M. D., Briggs, D. E. G., and Siveter, D. J. 2003. An ostracode crustacean with soft parts from the Lower Silurian. Science, 302:17491751. doi:10.1126/science.1091376 CrossRefGoogle ScholarPubMed
Siveter, D. J., Tanaka, G., Farrell, Ú. C., Martin, M. J., Siveter, D. J., and Briggs, D. E. G. 2014. Exceptionally preserved 450 million-year-old Ordovician ostracods with brood care. Current Biology, 24:801806. doi:10.1016/j.cub.2014.02.040 CrossRefGoogle ScholarPubMed
Smith, R. J. 2000. Morphology and ontogeny of Cretaceous ostracods with preserved appendages from Brazil. Palaeontology, 43:6398. doi:10.1111/1475-4983.00119 CrossRefGoogle Scholar
Smith, A. B., and Peterson, K. J. 2002. Dating the time of origin of major clades: molecular clocks and the fossil record. Annual Review of Earth and Planetary Sciences, 30:6588. doi:10.1146/annurev.earth.30.091201.140057 CrossRefGoogle Scholar
Summons, R. E. 2014. The exceptional preservation of interesting and informative biomolecules, p. 217236. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Tanaka, G., Hou, X.-G., Ma, X.-Y., Edgecombe, G. D., and Strausfeld, N. J. 2013. Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature, 502:364367. doi:10.1038/nature12520 CrossRefGoogle Scholar
Van Roy, P., Orr, P. J., Botting, J. P., Muir, L. A., Vinther, J., Lefebvre, B., el Hariri, K., and Briggs, D. E. G. 2010. Ordovician faunas of Burgess Shale-type. Nature, 465:215218. doi:10.1038/nature09038 CrossRefGoogle ScholarPubMed
Vinther, J., Briggs, D. E. G., Clarke, J., Mayr, G., and Prum, R. O. 2010. Structural coloration in a fossil feather. Biology Letters, 6:128–31. doi:10.1098/rsbl.2009.0524 CrossRefGoogle Scholar
Vinther, J., Briggs, D. E. G., Prum, R. O., and Saranathan, V. 2008. The colour of fossil feathers. Biology Letters, 4:522–5. doi:10.1098/rsbl.2008.0302 CrossRefGoogle ScholarPubMed
Walossek, D. 1999. On the Cambrian diversity of Crustacea, p. 327. In Schram, F. R. and von Vaupel Klein, J. C. (eds.), Crustaceans and the Biodiversity Crisis. Proceedings of the Fourth International Crustacean Congress, 1998.Google Scholar
Wilby, P. R., and Briggs, D. E. G. 1997. Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios, Mémoire spécial 20, 493502. doi: 10.1016/S0016-6995(97)80056-3 CrossRefGoogle Scholar
Wilby, P. R., and Martill, D. M. 1992. Fossil fish stomachs: A microenvironment for exceptional preservation. Historical Biology, 6:2536. doi:10.1080/10292389209380416 CrossRefGoogle Scholar
Wilkinson, I. P., Wilby, P. R., Williams, M., Siveter, D. J., Page, A. A., Leggitt, L., and Riley, D. A. 2010. Exceptionally preserved ostracodes from a Middle Miocene palaeolake, California, USA. Journal of the Geological Society London, 167:817825. doi:10.1144/0016-76492009-178 CrossRefGoogle Scholar
Williams, M., Siveter, D. J., Ashworth, A. C., Wilby, P. R., Horne, D. J., Lewis, A. R., and Marchant, D. R. 2008. Exceptionally preserved lacustrine ostracods from the Middle Miocene of Antarctica: implications for high-latitude palaeoenvironment at 77° South. Proceedings of the Royal Society of London B-Biological Sciences, 275:24492454. doi:10.1098/rspb.2008.0396 CrossRefGoogle ScholarPubMed
Wuttke, M. 1983. “Weichteil-Erhaltung” durch lithifizierte Mikroorganismen bei mittel-eozänen Vertebraten aus den Ölschiefern der “Grube Messel” bei Darmstadt. Senckenbergeana Lethaea, 64:509–27.Google Scholar
Zhang, F., Kearns, S. L., Orr, P. J., Benton, M. J., Zhou, Z., Johnson, D., Xu, X., and Wang, X. 2010. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature, 463:10751078. doi:10.1038/nature08740 CrossRefGoogle ScholarPubMed