Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T06:10:59.011Z Has data issue: false hasContentIssue false

Isotopic Proxies for Ecological Collapse and Recovery from Mass Extinctions

Published online by Cambridge University Press:  21 July 2017

Steven D'Hondt*
Affiliation:
Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
Get access

Extract

Carbon isotopic studies have documented the effects of mass extinctions and biological recoveries on the global carbon cycle. Stable carbon isotopes can also be used to document the disappearance and re-appearance of specific ecological strategies (such as life span, seasonality of growth, relative depth of habitat, and photosymbiont reliance) during mass extinctions and evolutionary recoveries. Nitrogen isotopes have never been used to study ecological collapse and recovery from mass extinctions. However, they have strong potential for testing the effects of mass extinctions and biological recoveries on the biologically mediated global nitrogen cycle. They may also be very helpful for documenting the effect of mass extinctions and taxonomic radiations on the trophic structure of terrestrial and marine ecosystems.

Type
Research Article
Copyright
Copyright © 1998 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altabet, M. A., and Francois, R. 1994. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochemical Cycles 8:103116.CrossRefGoogle Scholar
Altabet, M. A., Francois, R., Murray, D. W., and Prell, W. L. 1995. Climate-related variations in denitrification in the Arabian Sea from sediment 15N / 14N ratios. Nature 506509.Google Scholar
Anderson, T. F., and Arthur, M. A. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. pp. 1-1-1-151, in, Arthur, et al., (eds.). Stable isotopes Sedimentary Geology, SEPM Short Course No. 10.Google Scholar
Barrera, E., and Keller, G. 1994. Productivity across the Cretaceous/Tertiary boundary at high latitudes. Geological Society of America Bulletin 106:12541266.2.3.CO;2>CrossRefGoogle Scholar
Baud, A., Magaritz, M., and Holser, W. T. 1989. Permian-Triassic of the Tethys: carbon isotope studies. Geologische Rundschau 78:649677.Google Scholar
Bowring, S. A., Erwin, D. H., Jin, Y. G., Martin, M. W., Davidek, K., and Wang, W. 1998. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 280:10391045.Google Scholar
Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric anayses of carbon dioxide. Geochemica et Cosmochimica Acta 12:133149.CrossRefGoogle Scholar
DeNiro, M. J., and Epstein, S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45:341353.CrossRefGoogle Scholar
D'Hondt, S., and Donaghay, P. 1995. Carbon isotopic recovery from mass extinctions: no Strangelove oceans on geologic timescales? Geological Society of America, Annual Meeting, Abstracts with Programs 27(6):A164.Google Scholar
D'Hondt, S., Donaghay, P., Zachos, J. C., Luttenberg, D., and Lindinger, M. in press. Organic Carbon Fluxes and Ecological Recovery from the Cretaceous-Paleogene Mass Extinction. Science.Google Scholar
D'Hondt, S., Zachos, J. C., and Schultz, G. 1994. Stable isotopes and photosymbiosis in late Paleocene planktic foraminifera. Paleobiology 20 (3):391406.CrossRefGoogle Scholar
D'Hondt, S., and Zachos, J. C. in press. Cretaceous foraminifera and the evolutionary history of planktic photosymbiosis. Paleobiology.Google Scholar
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:965971.Google Scholar
Eppley, R. W. 1989. New production: history, methods, problems. pp. 8598, in, Berger, W.A., Smetacek, V.S., and Wefer, G., (eds.). Productivity of the ocean: present and past.Google Scholar
Erwin, D. H. 1993. The Great Paleozoic Crisis: Life and Death in the Permian. Columbia University Press, New York.Google Scholar
Farrell, J. W., Pedersen, T. F., Calvert, S. E., and Neilsen, B. 1995. Glacial-interglacial changes in nutrient utilization in the equatorial Pacific ocean. Nature 377:514517.Google Scholar
Faure, G. 1986. Principles of isotope geology. Second edition, Wiley and Sons, New York.Google Scholar
Fogel, M. L., and Cifuentes, L. A. 1993. Isotope fractionation during primary production. Pp. 7398, in, Engel, M.H. and Macko, S. A., (eds.). Chapter 3, Organic geochemistry. Plenum Press, New York.Google Scholar
Ganeshram, R.S., Pedersen, T.F., Calvert, S.E., and Murray, J.W. 1995. Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature 376:755758.CrossRefGoogle Scholar
Gruszczynski, M., Halas, S., Hoffman, A., and Malkowski, K. A brachiopod calcite record of the oceanic carbon and oxygen isotopic shifts at the Permian/Triassic transition. Nature 337:6468.Google Scholar
Hallam, A., and Goodfellow, W. D. 1990. Facies and geochemical evidence bearing on the end-Triassic disappearance of the Alpine reef system. Historical Biology 4:131138.Google Scholar
Hallam, A., and Wignall, P. B. 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford.Google Scholar
Hayes, J. M. 1993. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Marine Geology 113:111125.Google Scholar
Holser, W. T. 1997. Geochemical events documented in inorganic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 132:5173–182.Google Scholar
Holser, W. T., and Magaritz, M. 1987. Events near the Permian-triassic boundary. Modern Geology 11:155180.Google Scholar
Holser, W. T., and 14 others. 1989. A unique geochemical record at the Permian/Triassic boundary. Nature 337:3944.Google Scholar
Hsÿ, K. J., and McKenzie, J. A. 1985. A “Strangelove” ocean in the earliest Tertiary pp. 251269, in, Sundquist, E. T. and Broecker, W. S., (eds.). The Carbon Cycle and Atmospheric CO2, Natural Variations Archean to Present. AGU Geophys. Monogr. Ser., 32.Google Scholar
Hsÿ, K. J., and McKenzie, J. A. 1990. Carbon-isotope anomalies at era boundaries; global catastrophes and their ultimate cause pp. 6170, in, Sharpton, V. L. and Ward, P. D., (eds.). Global catastrophes in earth history, Geol. Soc. Am. Special Paper 247.Google Scholar
Hsÿ, K. J., McKenzie, J. A., and He, Q. X. 1982. Terminal Cretaceous environmental and evolutionary changes pp. 317328, in, Silver, L.T. and Schultz, P.H., (eds.). Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Geol. Soc. Am. Special Paper 190.Google Scholar
Kaplan, I. R. 1983. Stable isotopes of sulfur, nitrogen and deuterium in Recent marine sediments. pp. 2-1-2-108, in, Arthur, et al., (eds.). Stable isotopes in Sedimentary Geology, SEPM Short Course No. 10.Google Scholar
Kelly, D. C., Arnold, A. J., and Parker, W. C. 1996. Paedomorphosis and the origin of the Paleogene planktonic foraminiferal genus Morozovella . Paleobiology 22:266281.Google Scholar
Knoll, A. H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P. 1996. Comparative earth history and Late Permian mass extinction. Science 273:452457.Google Scholar
Kroopnick, P. 1980. The distribution of 13C in the Atlantic Ocean. Earth and Planetary Science Letters 49:469484.Google Scholar
Kroopnick, P., Deuser, W. G., and Craig, H. 1970. Carbon 13 measurements on dissolved inorganic carbon at the North Pacific (1969) Geosecs Station. Journal of Geophysical Research 75:76687671.Google Scholar
Kump, L. R. 1991. Interpreting carbon-isotope excursions: Strangelove oceans. Geology 19:299302.2.3.CO;2>CrossRefGoogle Scholar
Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C., and Macko, S. A. 1995. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: theoretical considerations and experimental results. Geochimica et Cosmochimica Acta 59:11311138.Google Scholar
Logan, G. A., Hayes, J. M., Hieshima, G. B., and Summons, R. E. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376:5356.Google Scholar
Macko, S.A., Fogel, M.L. (Estep), Hare, P.E., and Hoering, T.C. 1987. Isotope fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chemical Geology (Isotope Geosciences Section) 65:7992.Google Scholar
Magaritz, M., Krishnamurthy, R. V., and Holser, W. T. 1992. Parallel trends in organic and inorganic carbon isotopes across the Permian/Triassic boundary. American Journal of Science 292:727739.Google Scholar
Malkowski, K., Gruszczynski, M., and Hoffman, A. 1991. A facies geological test of stable isotope interpretation of the Upper Permian depositional environment in West Spitsbergen. Terra Nova 3:631637.Google Scholar
McConnaughy, T. 1989. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns Geochimica et Cosmochimica Acta 53:151162.Google Scholar
Michaels, A. F., and Silver, M. W. 1988. Primary production, sinking fluxes, and the microbial food web. Deep-Sea Research 35:473490.Google Scholar
Mii, H., Grossman, E. L., and Yancey, T. E. 1997. Stable carbon and oxygen isotope shifts in Permian seas of West Spitsbergen—global change or diagenetic artifact? Geology 25:277–230.Google Scholar
Minagawa, M., and Wada, E. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relationship between 15N and animal age. Geochimica et Cosmochimica Acta 48:11351140.Google Scholar
Miyake, Y., and Wada, E. 1967. The abundance ratio of 15N/14N in marine environments. Records of Oceanographic Works in Japan 9:3753.Google Scholar
Morante, R. 1996. Permian and Early Triassic isotopic records of carbon and strontium in Australia and a scenario of events about the Permian-Triassic boundary. Historical Biology 11:289, 310.Google Scholar
Norris, R. D. 1996. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology 22:461–80.Google Scholar
Oberhsnnsli, H., Hsÿ, K. J., Piasecki, S., and Weissert, H. 1989. Permian-Triassic carbon isotope anomaly in Greenland and in the southern Alps. Historical Biology 2:3749.Google Scholar
Ostrom, P. H., Macko, S. A., Engel, M. H., and Russell, D. A. 1993. Assessment of trophic structure of Cretaceous communities based on stable nitrogen isotope analyses. Geology 21:491494.Google Scholar
Owen, N. J. P. 1987. Natural variations in 15N in the marine environment. Advances in marine biology 24:389451.Google Scholar
Pilson, M. E. Q. 1998. An introduction to the chemistry of the sea. Prentice Hall, New Jersey.Google Scholar
Popp, B. N., Kenig, F., Wakeham, S. C., Laws, E. A., and Bidigare, R. R. 1998. Does growth rate affect ketone unsaturation and intracellular carbon isotope variability in Emiliania huxleyi? Paleoceanography 13:3541.Google Scholar
Rau, G. H., Arthur, M. A., and Dean, W. E. 1987. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implications for past changes in marine nitrogen biogeochemistry. Earth and Planetary Science Letters 82:269279.Google Scholar
Ryther, J. H. 1969. Photosynthesis and fish production in the sea. Science 166:7276.Google Scholar
Sachs, J. P. 1997. Nitrogen isotopes in chlorophyll and the origin of eastern Mediterranean sapropels. unpublished MIT-WHOI PhD dissertation, 271 p.Google Scholar
Schoeninger, M.J., and DeNiro, M.J. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta, 48:625639.Google Scholar
Schlesinger, W. H., 1997. Biogeochemistry, an analysis of global change (2nd edition), Academic Press, London.Google Scholar
Shackleton, N. J., Hall, M. A., Line, J., Shuxi, C. 1983. Carbon isotope data in core V19–30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature 306:319322.Google Scholar
Sigman, D. M. 1997. The role of biological production in Pliestocene atmospheric carbon dioxide variations and the nitrogen isotope dynamics of the Southern Ocean. unpublished MIT-WHOI PhD dissertation, 385 p.Google Scholar
Spero, H. J., Bijma, J., Lea, D. W., Bemis, B. E. 1997. Effect of seawater carbonate chemistry on planktonic foraminiferal carbon and oxygen isotope values. Nature 390:497500.Google Scholar
Spero, H. J., Lerche, I., and Williams, D. F. 1991. Opening the carbon isotope “vital effect” black box, 2, quantitative model for interpreting foraminiferal carbon isotope data. Paleoceanography 639655.Google Scholar
Stott, L. D., and Kennett, J. P. 1989. New constraints on early Tertiary palaeoproductivity from carbon isotopes in foraminifera. Nature 342 (6249):526529.Google Scholar
Stott, L. D., and Kennett, J. P. 1990. The paleoceanographic and paleoclimatic signature of the Cretaceous/Tertiary boundary in the Antarctic: stable isotopic results from ODP Leg 113. Scientific Results of the Ocean Drilling Project 113:829848.Google Scholar
Sundquist, E. T., 1985, Geological perspectives on carbon dioxide and the carbon cycle. pp. 560, in, Sundquist, E. T. and Broecker, W. S., (eds.). The Carbon Cycle and Atmospheric CO2, Natural Variations Archean to Present AGU Geophys. Monogr. Ser., 32.Google Scholar
Sundquist, E. T. 1993. The global carbon budget. Science 259:934941.Google Scholar
Surge, D. M., Savarese, M., Dodd, J. R., and Lohmann, K. C. 1997. Carbon isotopic evidence for photosynthesis in Early Cambrian oceans. Geology 25:503506.Google Scholar
Thierstein, H. R., and Berger, W. H. 1978. Injection events in earth history. Nature 276:461464.Google Scholar
Wada, E., and Hattori, A. 1991. Nitrogen in the Sea: forms, abundances, and rate processes. CRC Press, Boca Raton, Florida.Google Scholar
Wada, E., Terazaki, M., Kabaya, Y., and Nemoto, T. 1987. 15N and 13C abundance in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep-Sea Research 34:829841.Google Scholar
Wang, K., Geldsetzer, H. H. J., and Krouse, H. R. 1994. Permian-Triassic extinction: organic δ3C evidence from British Columbia, Canada. Geology 22:580584.Google Scholar
Waser, N.A.D., Harrison, P.J., Nielsen, B., Calvert, S.E., and Turpin, D.H. 1998. Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom. Limnology and Oceanography 43:215224.Google Scholar
Xu, D. -Y., and Yan, Z. 1993. Carbon isotope and iridium event markers near the Permian/Triassic boundary in the Meishan section, Zhejiang Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology 104:171176.Google Scholar
Zachos, J. C., and Arthur, M. A. 1986. Paleoceanography of the Cretaceous-Tertiary boundary event: inferences from stable isotopic and other data. Paleoceanography 1(1): 526.CrossRefGoogle Scholar
Zachos, J. C., Arthur, M. A., and Dean, W. E. 1989. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337(5):6164.Google Scholar
Zachos, J. C., Aubry, M. -P., Berggren, W. A., Ehrendorfer, T., and Heider, F. 1992. Magnetobiochemostratigraphy across the Cretaceous/Paleogene boundary at ODP Site 750A, Southern Kerguelen Plateau, in, Scientific Results of the Ocean Drilling Project 120, part 2: 961977.Google Scholar