Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T11:35:24.292Z Has data issue: false hasContentIssue false

Is morphology a good way to understand the evolution of corals?

Published online by Cambridge University Press:  21 July 2017

B. Lathuilière*
Affiliation:
Laboratoire de Géologie des ensembles sédimentaires, Université de Nancy 1, Faculté des Sciences, BP 239, 54506, Vandoeuvre lès Nancy Cedex and U.M.R. 5561 CNRS, France
Get access

Abstract

Within a family, genera are usually separated on the basis of their colonial structure. The periodic occurrence of transgeneric highly variable specific units (spectra) in the fossil record poses nomenclatural and phylogenetic problems. A detailed example among Jurassic montlivaltiids is presented in this paper involving the genera Montlivaltia, Coenotheca, Thecosmilia, Latiphyllia and Complexastrea. These spectra are related to peculiar unstable nonreefal environments and are characterized by the dominance of young stages of the colonial growth (astogeny). The arising nomenclatural difficulties are solved by way of spectral nomenclature which allows naming morphological types, as well as taxonomic units and keeping some stability within the general frame of nominal taxa. Genera correspond to grades (solitary, thamnasterioid, phaceloid, meandroid, cerioid) rather than clades and the colonial structure is a labile character. Several alternative phylogenetic hypotheses are proposed, among which, some can renew our vision of this group and emphasize that the iterative production of generic-level shapes is best explained by mean of heterochronic processes. It is suggested that testing of these hypotheses be extended to other families such as Microsolenidae, Stylophyllidae or Fungiidae.

Type
Research Article
Copyright
Copyright © 1996 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloiteau, J. 1952. Embranchement des coelentérés, p. 376684. In Piveteau, J. (ed.), Traité de Paléontologie, Tome 1. Masson, Paris.Google Scholar
Alloiteau, J. 1957. Contribution à la systématique des madréporaires fossiles. , C.N.R.S. Paris, 462 p.Google Scholar
Beauvais, L. 1959. Quelques observations sur la morphogenèse de Thecosmilia langi Koby. Bulletin de la Société géologique de France, 7:687690.CrossRefGoogle Scholar
Beauvais, L. 1978. Un nouveau genre de madréporaire ahermatypique et un nouveau mode de gemmation: Cardiastraea cristata nov. gen., nov. sp. du Lias du Maroc. Geobios, 11:8589.Google Scholar
Beauvais, L. 1980. Sur la taxinomie des Madréporaires mésozoiques. Acta Paleontologica Polonica, 25:345360.Google Scholar
Beauvais, L. 1984. Evolution and diversification of Jurassic scleractinia. Palaeontographica Americana, 54:219224.Google Scholar
Bertling, M. 1993. Riffkorallen im Norddeutschen Oberjura - Taxonomie, Ökologie, Verteilung Palaeontographica, Abt. A., 226:77123.Google Scholar
Budd Foster, A., Johnson, K. G., and Schultz, L. L. 1988. Allometric shape change and heterochrony in the free living coral Trachyphyllia bilobata (Duncan). Coral Reefs, 7:3744.CrossRefGoogle Scholar
Cairns, S. D. 1984. An application of phylogenetic analysis to the Scleractinia: family Fungiidae. Palaeontographica Americana, 54:4969.Google Scholar
Chen, C. A., Odorico, D. M., Ten Lohuis, M., Veron, J. E. N., and Miller, D. J. 1995. Systematic relationships within the Anthozoa (Cnidaria: Anthozoa) using the 5′-end of the 28S rDNA. Molecular Phylogenetics and Evolution, 4:175183.Google Scholar
Chevalier, J. P. 1987. Ordre des scléractiniaires, p. 403764. In Grassé, P. P. (ed.), Traité de Zoologie, Tome 3, Cnidaires. Masson, Paris.Google Scholar
Cope, J. C. W., Duff, K. L., Parsons, C. F., Torrens, H. S., Wimbledon, W. A., and Wright, J. K. 1980. A correlation of Jurassic rocks in the British Isles part two: Middle and Upper Jurassic. Geological Society of London Special Report 15, 109 p.Google Scholar
Durand, M., Hanzo, M., Lathuiliere, B., Le Roux, J., and Mangold, J. C. 1989. D.U.G.W. Stratigraphische Kommission, Subkommission für Jura Stratigraphie. Excursion en Lorraine. Nancy, 3-5 mai 1989 (unpublished): 60 p.Google Scholar
Fedorowski, J. 1978. Some aspects of coloniality in rugose corals. Palaeontology, 21:177224.Google Scholar
Fedorowski, J. 1979. On some aspects of coloniality in Permian corals, In Larwood, G. and Rosen, B., Biology and Systematics of Colonial Organisms. Systematics Association Special Volume, 11:155171.Google Scholar
Fedorowski, J. 1980, Some aspects of coloniality in corals. Acta Paleontologica Polonica 25:429437.Google Scholar
Frech, F. 1889. Ueber die Korallenfaunen der nordalpinen Trias Vorläufige Mittheilung Jahrbuch Geologische R.A., Wien, 39:489496.Google Scholar
Fursich, F. T., Pandey, D. K., Oschmann, W., Jaitly, A. K., and Singh, I. B. 1994. Ecology and adaptive strategies of corals in unfavourable environments: examples from the Middle Jurassic of the Kachchh Basin, Western India. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 194:269303.Google Scholar
Geister, J., and Lathuiligre, B. 1991. Jurassic coral reefs of the northeastern Paris Basin (Luxembourg and Lorraine). VI International Symposium on Fossil Cnidaria including Archaeocyatha and Porifera. Münster, Excursion A3, 112 p.Google Scholar
Geyer, O. F. 1966. Koloniale Knospung bei der Einzelkoralle Montlivaltia. Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins, N.S. 48:133141.CrossRefGoogle Scholar
Gill, G. A. 1970. La structure et la microstructure septale de Montlivaltia LMX.; Critères nouveaux pour la systématique des hexacoralliaires, Comptes Rendus des séances de l'Académie des Sciences, 270:294297.Google Scholar
Gill, G. A. 1977. Problèmes de structure, de classification et d'écologie chez les hexacoralliaires fossiles et actuels. , Universite Paris-VI, 246 p.Google Scholar
Gill, G. A. 1980. The fulturae (“compound synapticulae”) their structure and reconsideration of their systematic value. Acta Paleontologica Polonica, 25:301310.Google Scholar
Gill, G. A. and Coates, A. G. 1977. Mobility, growth patterns and substrate in some fossil and recent corals. Lethaia, 10:119134.CrossRefGoogle Scholar
Gill, G. A. and Lafuste, J. G. 1971. Madréporaires simples du Dogger d'Afghanistan: étude sur les structures de type “Montlivaltia.” Mémoires de la Société géologique de France N.S., 50, 115, 40 p.Google Scholar
Gould, S. J. 1977. Ontogeny and phylogeny. Harvard University Press, 501 p.Google Scholar
Gregory, J. W. 1900. Jurassic fauna of Cutch, The Corals. Memoirs of the Geological Survey of India, Palaeontologia Indica, Series 9, 2(2):1195.Google Scholar
Gygi, R. 1986. Eustatic sea level changes of the Oxfordian (late Jurassic) and their effect documented in sediments and fossil assemblages of an epicontinental sea. Eclogae Geologicae Helvetiae, 79:455491.Google Scholar
Gygi, R. and Persoz, F. 1986. Mineralostratigraphy, litho- and biostratigraphy combined in correlation of the Oxfordian (Late Jurassic) formations of the Swiss Jura Range. Eclogae Geologicae Helvetiae, 79:385454.Google Scholar
Hufling, R. 1989. Substrate induced morphotypes and intraspecific variability in Upper Cretaceous scleractinians of eastern Alps (West Germany, Austria). Memoirs of the Association of Australasian Palaeontologists, 8:5160.Google Scholar
Koby, F. 1880–1889. Monographie des polypiers jurassiques de la Suisse. Mémoires de la Société paléontologique suisse, 7–16, 582 p.Google Scholar
Krasnov, E. V. 1970. Filogenez i problema celostnosti gruppy scleractinia. Mezozojskie koralli SSSR, Trudi II, Vsesojuz Simp. Korallov SSSR, Moskva, 4:1540.Google Scholar
Kuzmicheva, Y. I. 1987. The evolution of colonialism in the Scleractinia Paleontological Journal, 20(4):11 p.Google Scholar
Lambelet, E. 1968. Korallen im Korallen-Oolith mit besonderer Berücksichtigung der Gattungen Montlivaltia und Thecosmilia. Dissertation. Hamburg (unpublished), 235 p.Google Scholar
Lathuiligre, B. 1988. Analyse de populations d'Isastrées bajociennes (Scléractiniaires jurassiques de France). Conséquences taxonomiques stratigraphiques et paléoécologiques. Geobios, 21:269305.Google Scholar
Lathuiligre, B. 1989. Répertoire objectif des coraux jurassiques. Presses Universite, Nancy, France, 76 p.Google Scholar
Lathuiligre, B. 1990. Periseris: scléractiniaire colonial jurassique. Révision structurale et taxinomie de populations bajociennes de l'Est de la France. Geobios, 23:3355.CrossRefGoogle Scholar
Lathuiligre, B. In press. Itinéraires astogéniques chez des coraux simples et coloniaux montlivaltiides du Bajocien de France. Geobios.Google Scholar
Leinfelder, R. 1994. Karbonatplattformen und Korallenriffe innerhalb siliziklastischer Sedimentationbereiche (Oberjura, Lusitanisches Becken, Portugal), Profil, 6, 207 p.Google Scholar
McCoy, F. 1848. On some new Mesozoic Radiata. Annals and Magazine of Natural History, 2:397420.CrossRefGoogle Scholar
Mayr, E. 1970. Populations, species, and evolution. Harvard University Press. 453 p.Google Scholar
Morsch, S. 1994. Mise au point sur les genres Complexastrea D'Orbigny et Confusastrea D'Orbigny (Scleractinia-Jurassique). Annales de Paléontologie, 80, 4:213235.Google Scholar
Morycowa, E., and Roniewicz, E. 1995. Microstructural disparity between Recent fungiine and Mesozoic microsolenine scleractinians. Acta Palaeontologica Polonica, 40:361385.Google Scholar
Pandey, D. K., and Fursich, F. T. 1993. Contribution to the Jurassic of Kachchh, Western India. I. The coral fauna. Beringeria, 8:369.Google Scholar
Powers, D. 1970. A numerical taxonomic study of Hawaian reef corals, Pacific Sciences, 24:180186.Google Scholar
Quenstedt, F. A. 1856–58. Der Jura. Laup, et Sieber, ed., Tübingen, 842 p.Google Scholar
Quenstedt, F. A. 1879–1881. Petrefactenkunde Deutschlands, 6: Korallen. Fues Verlag, Leipzig, 1099 p.Google Scholar
Romano, S. 1995. Evolution of two architectural strategies among scleractinian corals inferred from phylogenetic analysis of DNA sequences. VII International Symposium on Fossil Cnidaria and Porifera, Abstract:77.Google Scholar
Roniewicz, E., and Morycowa, E. 1993. Evolution of Scleractinia in the light of microstructural data. Courier Forschungsinstitut Senckenberg, 164:233240.Google Scholar
Rosen, B. 1986. Modular growth and form of corals: a matter of metamers ? Philosophical Transactions of the Royal Society of London B, 313:115142.Google Scholar
Ruget, C. 1985. Les foraminifères (Nodosariides) du Lias de l'Europe occidentale. Documents des Laboratoires de Géologie Lyon, 94, 273 p.Google Scholar
Sigal, J. 1966. Le concept taxinomique de spectre. Exemples d'application chez les foraminifères, propositions de règles de nomenclature. Mémoires de la Société géologique de France N.S. 3, 126 p.Google Scholar
Stanley, G. D. Jr. 1994. Upper Triassic corals from Peru. Palaeontographica Abt. A., 233:7598.CrossRefGoogle Scholar
Stanley, G. D. Jr. and Beauvais, L. 1994. Corals from an Early Jurassic coral reef in British Columbia: refuge on an oceanic island reef. Lethaia, 27:3547.Google Scholar
Tomes, R. F. 1882. On the madreporaria of the inferior oolite of the neighborhood of Cheltenham and Gloucester. Quarterly Journal of the Geological Society of London, 38:409450.CrossRefGoogle Scholar
Vaughan, T. W., and Wells, J. W. 1943. Revision of the suborders, families and genera of Scleractinia. Geological Society of America Special Paper, 44:363 p.Google Scholar
Veron, J. E. N. 1995. Corals in space and time: the biogeography and evolution of the Scleractinia. University of New South Wales Press, 321 p.Google Scholar
Veron, J. E. N., Odorico, D. M., Chen, C. A., and Miller, D. J. 1996. Reassessing evolutionary relationships of scleractinian corals. Coral Reefs, 15(1):19.CrossRefGoogle Scholar
Wells, J. W. 1956. Scleractinia, p. F328F444. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part F, Cnidaria. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar