Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T11:34:20.746Z Has data issue: false hasContentIssue false

Inferring substrate preferences from test morphology in echinoids, and interpreting spatial and temporal patterns of diversity

Published online by Cambridge University Press:  21 July 2017

Burchard D. Carter*
Affiliation:
Department of Geology and Physics, Georgia Southwestern State University Americus, Georgia 31709–4693 USA
Get access

Abstract

Preservational style of fossil echinoid tests allows assessment of the likelihood of post-mortem transport out of the preferred sediment type of the living echinoid. Sedimentologic study of the matrix of untransported specimens allows a check on functional morphologic inferences of the species' preferred sediment types. Functional morphologic analysis allows inference of a species preferred sediment type because the petals, fasciolaes, tubercles, ambulacral pores, ambulacral shape, and test profile control the echinoid's ability to burrow, and the grain size of sediment into which it is capable of doing so. Past studies have achieved better than 90% accuracy in predicting the grain size of thin sections of rocks containing echinoids, simply by interpretation of their functional morphology. Most mistaken predictions are attributable to species living in sediments that are less difficult to burrow in (sands) than those to which they are adapted (muds). Other species may live in sediments in which they are not well adapted by assuming an epifaunal mode of life.

Relative proportions of species in an echinoid fauna preferring various sediment grain sizes, plotted for each of a number of localities, has proven useful in inferring generalized facies patterns within regions.

Plots of temporal changes in echinoid species diversity through time correspond well to changes in proportions of species inferred to have preferred various substrate conditions, suggesting an environmental and taphonomic component to simple diversity curves.

Type
Research Article
Copyright
Copyright © 1997 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, A. 1883. Reports on the results of dredging, under the supervision of Alexander Agassiz, in the Gulf of Mexico (1877–78), in the Caribbean Sea (1878–79), and along the Atlantic coast of the United States (1880), by the U.S. Coast Survey steamer “Blake,” Lieutenant-Commander C. D. Sigsbee, U. S. N. and Commander J. R. Bartlett, U. S. N., Commanding. XXIV. Part 1. Report on the Echini. Harvard College Museum of Comparative Zoology Memoir, 10, 94 p.Google Scholar
Aigner, T. 1983. Facies and origin of nummulitic buildups: an example from the Giza Pyramids area (Middle Eocene, Egypt). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 166:347368.Google Scholar
Airaghi, C. 1903. Alcuni echinidi del Terziario Veneto. Società Italiana della Scienza Naturala, Atti, 41:415424.Google Scholar
Bittner, A. 1881. Beiträge zur kenntniss altertertiärer echinidenfaunen der südalpen. II. Beiträge zur kenntniss der echinidenfauna des altertertiärers von Vicenza und Verona. Beiträge zur Paläontologie Österreich-Ungarns und des Orients, 1:72110.Google Scholar
Bromley, R. G., and Asgaard, U. 1975. Sediment structures produced by a spatangoid echinoid: a problem of preservation. Bulletin of the Geological Society of Denmark, 24:261281.Google Scholar
Carter, B. D. 1989. Echinoid biofacies and lithofacies distributions in the Upper Eocene of the Dougherty Plain, southwestern Georgia. Southeastern Geology, 31:175191.Google Scholar
Carter, B. D. 1990. Late Eocene echinoid biofacies of Florida. Palaios, 5:176183.Google Scholar
Carter, B. D. 1995. Temporal variations in diversity of Echinoidea through the Paleogene, eastern Gulf Coastal Plain: the effects of substrate. Geological Society of America Abstracts with Programs, 27(2):4142.Google Scholar
Carter, B. D., and Azab, M. M. 1993. Substrate availability as a primary control on echinoid diversity. Geological Society of America Abstracts with Programs, 26:A-105.Google Scholar
Carter, B. D., Beisel, T. H., Branch, W. B., and Mashburn, C. M. 1989. Substrate preferences of Late Eocene (Priabonian/Jacksonian) echinoids of the eastern Gulf Coast. Journal of Paleontology, 63:495503.Google Scholar
Carter, B. D., and Hamza, F. 1994. Substrate preferences and biofacies of Egyptian Eocene echinoids. Palaios, 9:237253.Google Scholar
Carter, B. D., and McGee, R. Q. 1995. Comparison of echinoid and mollusc taphonomy in the Late Eocene of the Gulf Coast: greater diversity does not equate with a better record. Geological Society of America Abstracts with Programs, 27:2:42.Google Scholar
Carter, B. D., and McKinney, M. L. 1992. Eocene echinoids, the Suwannee Strait, and biogeographic taphonomy. Paleobiology, 18:299325.Google Scholar
Chesher, R. H. 1968. The systematics of sympatric species in West Indian spatangoids. University of Miami Studies in Tropical Oceanography, 7, 168 p.Google Scholar
Cotteau, G. H., 1885–1889, Paléontologie Française, Terrains Tertiaires. Échinides Éocènes 1. Paris, Librarie de l'Académie de Médecine, 672 p.Google Scholar
Croft, M., and Shaak, G. D. 1985. Ecology and stratigraphy of the echinoids of the Ocala Limestone (Late Eocene). Tulane Studies in Geology and Paleontology, 18:127143.Google Scholar
Dames, W. 1877. Die echiniden der Vincentinischen und Veronesischen Tertiärablagerungen. Paläontographica, 25:199.Google Scholar
Ebert, T. A. 1982. Longevity, life history, and relative body wall size in sea urchins. Ecological Monographs, 52:353394.Google Scholar
Ernst, G. 1973. Aktuopaläontologie und Merkmalsvariabilität bei mediterranen Echiniden und Rückschlüsse auf die Öcologie und Artumgrenzung fossiler Formen. Paläontologische Zietschrift, 47:188216.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. A., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A Geologic Time Scale 1989. Cambridge University Press, Cambridge, 263 p.Google Scholar
Kanazawa, K. 1992. Adaptation of test shape for burrowing and locomotion in spatangoid echinoids. Palaeontology, 35:733750.Google Scholar
Kanazawa, K. 1995. How spatangoids produce their traces: relationship between burrowing mechanism and trace structure. Lethaia, 28:211219.Google Scholar
Kier, P. M. 1975. The echinoids of Carrie Bow Key, Belize. Smithsonian Contributions to Zoology, 206, 45 p.Google Scholar
Kier, P. M. 1977. The poor fossil record of the regular echinoid. Paleobiology, 3:168174.Google Scholar
Kier, P. M., and Grant, R. E. 1965. Echinoid distributions and habitats, Key Largo Coral Reef Preserve, Florida. Smithsonian Miscellaneous Collections, 149, 68 p.Google Scholar
Laube, G. C. 1868. Ein beitrag zur kenntniss der echinodermen des Vincentinischen Tertiärgebietes. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, 29:138.Google Scholar
Mazzetti, G. 1894. Echinidi fossili del Vincentino o nuovi o poco noti. Pontificia Accademia Nuovi Lincei di Roma Memoria, 10:716.Google Scholar
McKinney, M. L. 1984. Allometry and heterochrony in an Eocene echinoid lineage: morphological change as a by-product of size selection. Paleobiology, 10:207219.CrossRefGoogle Scholar
McKinney, M. L. 1988. Roles of allometry and ecology in echinoid evolution, p. 165173. In Smith, A. B. and Paul, C. R. C. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
McNamara, K. J., and Philip, G. M. 1980. Australian Tertiary schizasterid echinoids. Alcheringa, 4:4765.Google Scholar
Nebelsick, J. H. 1992. The northern Bay of Safaga (Red Sea, Egypt): an actuopalaeontological approach. III. Distribution of echinoids. Beitrage zur Paläontologie von Österreich, 17:579.Google Scholar
Nichols, D. 1959. Changes in the chalk heart-urchin Micraster interpreted in relation to living forms. Philosophical Transactions of the Royal Society of London B, 242:347437.Google Scholar
Oppenheim, P. 1898. Über einige Echiniden des Venetianischen und südtiroler Tertiärs. Zeitschrift der Deutsche geologische Gesellschaft, 50:152167.Google Scholar
Oppenheim, P. 1900–1901. Die Priabonaschichten und ihre fauna. Paläontographica, 47:1348.Google Scholar
Oppenheim, P. 1902a. Revision der Tertiären Echiniden Venetiens und des Trentino, unter Mittheilung neuer Formen. Zeitschrift der Deutsche geologische Gesellschaft, 54:159283.Google Scholar
Oppenheim, P. 1902b. Nachtrag zu meinem Aufsatz “Revision der Tertiären Echiniden Venetiens und des Trentino, unter Mittheilung neuer Formen.” Zeitschrift der Deutsche geologische Gesellschaft, 54:6671.Google Scholar
Reyment, R. A. 1986. Nekroplanktonic dispersal of echinoid tests. Palaeogeography, Palaeoclimatology, Palaeoecology, 52:347349.Google Scholar
Roman, J., and Strougo, A. 1988. Échinoïdes de l'étage Mokattamien (Éocène moyen et supérieur) de la région du Gran Caire (Égypte). Bulletin du Muséum National d'Histoire Naturelle, Paris, Series 4, 10:137161.Google Scholar
Said, R. 1990. The Geology of Egypt. Balkema, Rotterdam, 734 p.Google Scholar
Salem, R. 1976. Evolution of Eocene–Miocene sedimentation in parts of northern Egypt. Bulletin of the American Association of Petroleum Geologists, 60:3464.Google Scholar
Smith, A. B. 1984. Echinoid Paleobiology. George Allen & Unwin, London, 190 p.Google Scholar
Smith, A. B., and Crimes, T. P. 1983. Trace fossils formed by heart urchins(Echinoidea): a study of Scolicea and related traces. Lethaia, 16:7992.Google Scholar
Stanton, R. J., Dodd, J. R., and Alexander, R. R. 1979. Eccentricity in the clypeasteroid echinoid Dendraster: environmental significance and application in Pliocene paleoecology. Lethaia, 12:7587.Google Scholar