Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T07:19:10.205Z Has data issue: false hasContentIssue false

Geobiological Events in the Ediacaran Period

Published online by Cambridge University Press:  21 July 2017

Shuhai Xiao*
Affiliation:
Department of Geosciences Virginia Polytechnic Institute and State University 3061B Derring Hall Blacksburg, VA 24061
Get access

Abstract

The Ediacaran Period represents a critical transition in Earth history. Major perturbations and innovations occurred in the Ediacaran climate, ocean, and biosphere systems. This paper reviews recent advances in Ediacaran glaciations, oxidation events, and biological evolution. There were one or more glaciations in the Ediacaran Period. Ediacaran successions also record multiple negative δ13Ccarb excursions in addition to the excursion associated with basal Ediacaran cap dolostones. These negative δ13Ccarb excursions possibly represent pulses of ocean oxidation events. The Ediacaran Period is also distinguished by two unique biotas—the Doushantuo-Pertatataka acritarchs and classical Ediacara biota—that characterize, respectively, the early and late part of the period. These two biotas appear to be separated by a glaciation and by a major negative δ13Ccarb excursion, although the exact temporal relationship among the climatic, geochemical, and biotic events is far from resolved. Future research should focus on improving geochronological, paleoenvironmental, and paleontological data from key Ediacaran successions in order to test the apparent and tantalizing couplings between evolutionary and environmental events.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amthor, J. E., Grotzinger, J. P., Schröder, S., Bowring, S.A., Ramezani, J., Martin, M. W., and Matter, A. 2003. Extinction of Cloudina and Namacalathus at the Precambrian–Cambrian boundary in Oman. Geology, 31(5):431434.Google Scholar
Anbar, A. D., and Knoll, A. H. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297:11371142.Google Scholar
Bailey, J. V., Joye, S. B., Kalanetra, K. M., Flood, B. E., and Corsetti, F. A. 2007. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 445:198201.CrossRefGoogle ScholarPubMed
Banner, J. L., and Hanson, G. N. 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54:31233137.CrossRefGoogle Scholar
Barfod, G. H., Albaréde, F., Knoll, A. H., Xiao, S., Télouk, P., Frei, R., and Baker, J. 2002. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth and Planetary Science Letters, 201:203212.CrossRefGoogle Scholar
Bengtson, S., and Budd, G. 2004. Comment on “Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian”. Science, 306:1290a1291a.CrossRefGoogle Scholar
Bengtson, S., and Yue, Z. 1992. Predatorial borings in late Precambrian mineralized exoskeletons. Science, 257(5068):367369.Google Scholar
Bertrand-Sarfati, J., Moussine-Pouchkine, A., Amard, B., and Ait Kaci Ahmed, A. 1995. First Ediacaran fauna found in western Africa and evidence for an Early Cambrian glaciation. Geology, 23:133136.Google Scholar
Bingen, B., Griffin, W. L., Torsvik, T. H., and Saeed, A. 2005. Timing of Late Neoproterozoic glaciation on Baltica constrained by detrital zircon geochronology in the Hedmark Group, south-east Norway. Terra Nova, 17:250258.Google Scholar
Bjerrum, C. J., and Canfield, D. E. 2002. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature, 417:159162.Google Scholar
Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today, 10(9):17.Google Scholar
Bowring, S. A., and Condon, D. J. 2005. Sequencing the Ediacaran Period: A high-resolution temporal framework for metazoan evolution. PaleoBios, 25 (supplement to number 2):21.Google Scholar
Bowring, S. A., Grotzinger, J. P., Condon, D. J., Ramezani, J., Newall, M. J., and Allen, P. A. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science, 307:10971145.Google Scholar
Briggs, D. E. G. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences, 31:275301 (doi: 210.1146/annurev.earth.1131.100 901.144746).Google Scholar
Burns, S. J., and Matter, A. 1993. Carbon isotope record of the latest Proterozoic from Oman. Eclogae Geologicae Helvetiae, 86:595607.Google Scholar
Calver, C. R. 2000. Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambrian Research, 100:121150.Google Scholar
Calver, C. R. 2007. Some notes on the geology of King Island. Tasmanian Geological Survey Record, 2007/02:120.Google Scholar
Calver, C. R., Black, L. P., Everard, J. L., and Seymour, D. B. 2004. U-Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania. Geology, 10:893896.Google Scholar
Calver, C. R., and Walter, M. R. 2000. The late Neoproterozoic Grassy Group of King Island, Tasmania: correlation and palaeogeographic significance. Precambrian Research, 100:299312.Google Scholar
Canfield, D. E. 2005. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33:136.Google Scholar
Canfield, D. E., Poulton, S. W., and Narbonne, G. M. 2007. Late Neoproterozoic deepocean oxygenation and the rise of animal life. Science, 315:9295.CrossRefGoogle ScholarPubMed
Chen, D., Dong, W., Zhu, B., and Chen, X. P. 2004a. Pb-Pb ages of Neoproterozoic Doushantuo phosphorites in South China: Constraints on early metazoan evolution and glaciation events. Precambrian Research, 132:123132.Google Scholar
Chen, J.-Y., Bottjer, D. J., Davidson, E. H., Dornbos, S. Q., Gao, X., Yang, Y.-H., Li, C.-W., Li, G., Wang, X.-Q., Xian, D.-C., Wu, H.-J., Hwu, Y.-K., and Tafforeau, P. 2006. Phosphatized polar lobe-forming embryos from the Precambrian of southwest China. Science, 312:16441646.Google Scholar
Chen, J.-Y., Bottjer, D. J., Oliveri, P., Dornbos, S. Q., Gao, F., Ruffins, S., Chi, H., Li, C.-W., and Davidson, E. H. 2004b. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science, 305:218222.Google Scholar
Chen, J., Oliveri, P., Gao, F., Dornbos, S. Q., Li, C.-W., Bottjer, D. J., and Davidson, E. H. 2002. Precambrian animal life: probable developmental and adult cnidarian forms from southwest China. Developmental Biology, 248:182196.Google Scholar
Chen, J., Oliveri, P., Li, C.-W., Zhou, G.-Q., Gao, F., Hagadorn, J. W., Peterson, K. J., and Davidson, E. H. 2000. Precambrian animal diversity: Putative phosphatized embryos from the Doushantuo Formation of China. Proceedings of the National Academy of Sciences, USA, 97(9):44574462.CrossRefGoogle ScholarPubMed
Chumakov, N. M. 2007. Climates and climate zonality of the Vendian: geological evidence, p. 1526. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. The Geological Society of London Special Publication 286, London.Google Scholar
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308:9598.CrossRefGoogle ScholarPubMed
Conway Morris, S. 1993. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology, 36:593635.Google Scholar
Corsetti, F. A., and Kaufman, A. J. 2003. Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California. Geological Society of America Bulletin, 115:916932.CrossRefGoogle Scholar
Donoghue, P. C. J., and Dong, X. 2005. Embryos and ancestors, p. 8199. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development. Yale Peabody Museum Publications, New Haven.Google Scholar
Donoghue, P. C. J., Kouchinsky, A., Waloszek, D., Bengtson, S., Dong, X.-P., Val'Kov, A. K., Cunningham, J. A., and Repetski, J. E. 2006. Fossilized embryos are widespread but the record is temporally and taxonomically biased. Evolution & Development, 8:232238.CrossRefGoogle ScholarPubMed
Dornbos, S. Q., Bottjer, D. J., Chen, J. Y., Gao, F., Oliveri, P., and Li, C. W. 2006. Environmental controls on the taphonomy of phosphatized animals and animal embryos from the Neoproterozoic Doushantuo Formation, southwest China. Palaios, 21:314.Google Scholar
Droser, M. L., Jensen, S., and Gehling, J. G. 2002. Trace fossils and substrates of the terminal Proterozoic-Cambrian transition: Implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of Sciences, USA, 99(20):1257212576.Google Scholar
Erwin, D. H. 2006. The developmental origins of animal bodyplans, p. 159197. In Xiao, S. and Kaufman, A. J. (eds.), Neoproterozoic Geobiology and Paleobiology. Springer, Dordrecht, the Netherlands.Google Scholar
Eyles, C. H., Eyles, N., and Grey, K. 2007. Palaeoclimate implications from deep drilling of Neoproterozoic strata in the Officer Basin and Adelaide Rift Complex of Australia: a marine record of wetbased glaciers. Palaeogeography Palaeoclimatology Palaeoecology, 248:291312.CrossRefGoogle Scholar
Fedonkin, M. A. 2003. The origin of Metazoa in the light of the Proterozoic fossil record. Paleontological Research, 7:941.Google Scholar
Fedonkin, M. A., Simonetta, A., and Ivantsov, A. Y. 2007. New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): palaeoecological and evolutionary implications, p. 157179. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publications 286.Google Scholar
Fike, D. A., Grotzinger, J. P., Pratt, L. M., and Summons, R. E. 2006. Oxidation of the Ediacaran ocean. Nature, 444:744747.Google Scholar
Gaidos, E. J., Dubuc, T., Dunford, M., McAndrew, P., Padilla-Gamiño, J., Studer, B., Weersing, K., and Stanley, S. M. 2007. The Precambrian emergence of animal life: a geobiological perspective. Geobiology, 5:351373.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.Google Scholar
Gehling, J. G., Droser, M. L., Jensen, S. R., and Runnegar, B. N. 2005. Ediacara organisms: relating form to function, p. 4366. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development. Yale Peabody Museum Publications, New Haven.Google Scholar
Gehling, J. G., and Narbonne, G. M. 2007. Spindle-shaped Ediacara fossils from the Mistaken Point assemblage, Avalon Zone, Newfoundland. Canadian Journal of Earth Sciences, 44:367387.Google Scholar
Gostling, N. J., Thomas, C.-W., Greenwood, J. M., Dong, X., Bengtson, S., Raff, E. C., Raff, R. A., Degnan, B. M., Stampanoni, M., and Donoghuea, P. C. J. 2008. Deciphering the fossil record of early bilaterian embryonic development in light of experimental taphonomy. Evolution & Development, 10:339349.Google Scholar
Grant, S. W. F. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science, 290-A:261294.Google Scholar
Grazhdankin, D. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology, 30(2):203221.Google Scholar
Grey, K. 2005. Ediacaran palynology of Australia. Memoirs of the Association of Australasian Palaeontologists, 31:1439.Google Scholar
Grey, K., and Calver, C. R. 2007. Correlating the Ediacaran of Australia, p. 115135. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. The Geological Society of London Special Publication 286, London.Google Scholar
Grey, K., and Corkeron, M. 1998. Late Neoproterozoic stromatolites in glaciogenic successions of the Kimberley region, Western Australia: Evidence for a younger Marinoan glaciation. Precambrian Research, 92:6587.Google Scholar
Grey, K., Walter, M. R., and Calver, C. R. 2003. Neoproterozoic biotic diversification: Snowball Earth or aftermath of the Acraman impact? Geology, 31(5):459462.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270:598604.Google Scholar
Hagadorn, J. W., Fedo, C. M., and Waggoner, B. M. 2000. Early Cambrian Ediacaran-type fossils from California. Journal of Paleontology, 74(4):731740.Google Scholar
Hagadorn, J. W., and Waggoner, B. M. 2000. Ediacaran fossils from the southwestern Great Basin, United States. Journal of Paleontology, 74(2):349359.Google Scholar
Hagadorn, J. W., Xiao, S., Donoghue, P. C. J., Bengtson, S., Gostling, N. J., Pawlowska, M., Raff, E. C., Raff, R. A., Turner, F. R., Yin, C., Zhou, C., Yuan, X., McFeely, M. B., Stampanoni, M., and Nealson, K. H. 2006. Cellular and subcellular structure of Neoproterozoic embryos. Science, 314:291294.Google Scholar
Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C., and Rice, A. H. N. 2005. Toward a Neoproterozoic composite carbonisotope record. GSA Bulletin, 117:11811207; doi: 1110.1130/B25630.25631.Google Scholar
Hoffman, P. F., and Schrag, D. P. 2002. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova, 14:129155.Google Scholar
Hoffmann, K.-H., Condon, D. J., Bowring, S. A., and Crowley, J. L. 2004. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology, 32:817820.Google Scholar
Hua, H., Chen, Z., and Yuan, X. 2007. The advent of mineralized skeletons in Neoproterozoic Metazoa: new fossil evidence from the Gaojiashan Fauna. Geological Journal, 42:263279.Google Scholar
Hua, H., Chen, Z., Yuan, X., Zhang, L., and Xiao, S. 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina . Geology, 33(4):277280.Google Scholar
Hua, H., Pratt, B. R., and Zhang, L. 2003. Borings in Cloudina shells: Complex predator-prey dynamics in the terminal Neoproterozoic. Palaios, 18:454459.Google Scholar
Huntley, J. W., Xiao, S., and Kowalewski, M. 2006. 1.3 billion years of acritarch history: An empirical morphospace approach. Precambrian Research, 144:5268.Google Scholar
Jensen, S., Droser, M. L., and Gehling, J. G. 2006. A critical look at the Ediacaran trace fossil record, p. 115157. In Xiao, S. and Kaufman, A. J. (eds.), Neoproterozoic Geobiology. Springer, Dordrecht, the Netherlands.Google Scholar
Jensen, S., Gehling, J. G., and Droser, M. L. 1998. Ediacara-type fossils in Cambrian sediments. Nature, 393:567569.Google Scholar
Jiang, G., Kaufman, A. J., Christie-Blick, N., Zhang, S., and Wu, H. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters, 261:303320.Google Scholar
Kaufman, A. J., Corsetti, F. A., and Varni, M. A. 2007. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA. Chemical Geology, 237:4763.CrossRefGoogle Scholar
Kaufman, A. J., Jacobsen, S. B., and Knoll, A. H. 1993. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth and Planetary Science Letters, 120:409430.Google Scholar
Kaufman, A. J., Jiang, G., Christie-Blick, N., Banerjee, D. M., and Rai, V. 2006. Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India. Precambrian Research, 147:156185.CrossRefGoogle Scholar
Kaufman, A. J., and Knoll, A. H. 1995. Neoproterozoic variations in the C-isotope composition of sea water: Stratigraphic and biogeochemical implications. Precambrian Research, 73(3–4):2749.Google Scholar
Kaufman, A. J., Knoll, A. H., and Narbonne, G. M. 1997. Isotopes, ice ages, and terminal Proterozoic earth history. Proceedings of the National Academy of Sciences, USA, 94:66006605.CrossRefGoogle ScholarPubMed
Kendall, B., Anbar, A. D., Gordon, G., Arnold, G. L., and Creaser, R. A. 2006a. Constraining the redox state of the Proterozoic deep oceans using the Mo isotope systematics of euxinic black shales. Geological Society of America Abstracts with Programs, 38(7):56.Google Scholar
Kendall, B., Creaser, R. A., and Selby, D. 2006b. Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of “Sturtian” glaciation. Geology, 34:729732.Google Scholar
Kennedy, M., Droser, M., Mayer, L. M., Pevear, D., and Mrofka, D. 2005. Late Precambrian oxygenation: inception of the clay mineral factory. Science, 311:14461449.Google Scholar
Knoll, A. H. 1992. Microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, western Svalbard. Palaeontology, 35:751774.Google Scholar
Knoll, A. H. 2003. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton University Press, Princeton, NJ, 304 p.Google Scholar
Knoll, A. H., and Walter, M. R. 1992. Latest Proterozoic stratigraphy and Earth history. Nature, 356:673678.Google Scholar
Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N. 2006. The Ediacaran Period: a new addition to the geologic time scale. Lethaia, 39:1330.Google Scholar
Le Guerroue, E., Allen, P. A., Cozzi, A., Etienne, J. L., and Fanning, M. 2006. 50 Myr recovery from the largest negative δ13C excursion in the Ediacaran ocean. Terra Nova, 18:147153.Google Scholar
Li, C.-W., Chen, J.-Y., and Hua, T.-E. 1998. Precambrian sponges with cellular structures. Science, 279:879882.Google Scholar
Logan, G. A., Hayes, J. M., Hieshima, G. B., and Summons, R. E. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature, 376:5356.Google Scholar
Love, G. D., Fike, D. A., Grosjean, E., Stalvies, C., Grotzinger, J., Bradley, A. S., Bowring, S., Condon, D., and Summons, R. E. 2006. Constraining the timing of basal metazoan radiation using molecular biomarkers and U-Pb isotope dating. Geochimica et Cosmochimica Acta, 70:A371.Google Scholar
McFadden, K. A., Huang, J., Chu, X., Jiang, G., Kaufman, A. J., Zhou, C., Yuan, X., and Xiao, S. 2008. Pulsed oxygenation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, USA, 105:31973202.Google Scholar
McKirdy, D. M., Webster, L. J., Arouri, K. R., Grey, K., and Gostin, V. A. 2006. Contrasting sterane signatures in Neoproterozoic marine rocks of Australia before and after the Acraman asteroid impact. Organic Geochemistry, 37:189207.CrossRefGoogle Scholar
Moczydlsowska, M. 2005. Taxonomic review of some Ediacaran acritarchs from the Siberian Platform. Precambrian Research, 136(3–4):283307.CrossRefGoogle Scholar
Moczydlsowska, M., Vidal, G., and Rudavskaya, V. A. 1993. Neoproterozoic (Vendian) phytoplankton from the Siberian Platform, Yakutia. Palaeontology, 36:495521.Google Scholar
Myrow, P. M. 1995. Neoproterozoic rocks of the Newfoundland Avalon Zone. Precambrian Research, 73:123136.Google Scholar
Narbonne, G. M. 2004. Modular construction of early Ediacaran complex life forms. Science, 305:11411144.Google Scholar
Narbonne, G. M. 2005. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442.CrossRefGoogle Scholar
Narbonne, G. M., and Gehling, J. G. 2003. Life after snowball: The oldest complex Ediacaran fossils. Geology, 31(1):2730.Google Scholar
Peltier, W. R., Liu, Y., and Crowley, J. W. 2007. Snowball Earth prevention by dissolved organic carbon remineralization. Nature, 450:813818.Google Scholar
Peterson, K. J., and Butterfield, N. J. 2005. Origin of the Eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences, USA, 102:95479552.Google Scholar
Peterson, K. J., McPeek, M. A., and Evans, D. V. D. 2005. Tempo and mode of early animal evolution: Inferences from rocks, Hox, and molecular clocks. Paleobiology, 31:3655.Google Scholar
Porter, S. M., Knoll, A. H., and Affaton, P. 2004. Chemostratigraphy of Neoproterozoic cap carbonates from the Volta Basin, West Africa. Precambrian Research, 130:99112.Google Scholar
Rothman, D. H., Hayes, J. M., and Summons, R. 2003. Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences, USA, 100(14):81248129.Google Scholar
Runnegar, B. 1995. Vendobionta or Metazoa? Developments in understanding the Ediacara “fauna”. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 195(1–3):303318.Google Scholar
Saylor, B. Z., Kaufman, A. J., Grotzinger, J. P., and Urban, F. 1998. A composite reference section for terminal Proterozoic strata of southern Namibia. Journal of Sedimentary Research, Section B: Stratigraphy and Global Studies, 66(6):12231235.Google Scholar
Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Czaja, A. D., and Wdowiak, T. J. 2005. Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology, 5:333371.Google Scholar
Schopf, J. W., Tripathi, A., and Kudryavtsev, A. B. 2006. Three dimensional confocal optical microscopy of Precambrian microscopic organisms. Astrobiology, 6:116.Google Scholar
Seilacher, A. 1984. Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions?, p. 159168. In Holland, H. D. and Trendall, A. F. (eds.), Patterns of Change in Earth Evolution. Springer-Verlag, Berlin.Google Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, London, 149:607613.Google Scholar
Seilacher, A., Grazhdankin, D., and Legouta, A. 2003. Ediacaran biota: The dawn of animal life in the shadow of giant protists. Paleontological Research, 7(1):4354.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time, p. 153190. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press, Princeton, New Jersey.Google Scholar
Shen, B., Dong, L., Xiao, S., and Kowalewski, M. 2008a. The Avalon explosion: Evolution of Ediacara morphospace. Science, 319:8184.Google Scholar
Shen, B., Xiao, S., Dong, L., Zhou, C., and Liu, J. 2007. Problematic macrofossils from Ediacaran successions in the North China and Chaidam blocks: Implications for their evolutionary roots and biostratigraphic significance. Journal of Paleontology, 81:13961411.Google Scholar
Shen, Y., Zhang, T., and Hoffman, P. F. 2008b. On the co-evolution of Ediacaran oceans and animals. Proceeding of the National Academy of Sciences of the United State of America, 105:73767381.Google Scholar
Shields, G. A., Deynoux, M., Culver, S. J., Brasier, M. D., Affaton, P., and Vandamme, D. 2007a. Neoproterozoic glaciomarine and cap dolostone facies of the southwestern Taoudéni Basin (Walidiala Valley, Senegal/Guinea, NW Africa). Comptes Rendus Geoscience, 339:186199.Google Scholar
Shields, G. A., Deynoux, M., Strauss, H., Paquet, H., and Nahon, D. 2007b. Barite-bearing cap dolostones of the Taoudéni Basin, northwest Africa: Sedimentary and isotopic evidence for methane seepage after a Neoproterozoic glaciation. Precambrian Research, 153:209235.Google Scholar
Shu, D.-G., Morris, S. C., Han, J., Li, Y., Zhang, X.-L., Hua, H., Zhang, Z.-F., Liu, J.-N., Guo, J.-F., Yao, Y., and Yasui, K. 2006. Lower Cambrian vendobionts from China and early diploblast evolution. Science, 312:731734.Google Scholar
Sperling, E. A., Pisani, D., and Peterson, K. J. 2007. Poriferan paraphyly and its implications for Precambrian paleobiology, p. 355368. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publications 286.Google Scholar
Thompson, M. D., and Bowring, S. A. 2000. Age of the Squantum “tillite”, Boston Basin, Massachusetts: U-Pb zircon constraints on terminal Neoproterozoic glaciation. American Journal of Science, 300:630655.Google Scholar
Tiwari, M., and Knoll, A. H. 1994. Large acanthomorphic acritarchs from the Infrakrol Formation of the Lesser Himalaya and their stratigraphic significance. Journal of Himalayan Geology, 5:193201.Google Scholar
Trompette, R. 1996. Temporal relationship between cratonization and glaciation: The Vendian–early Cambrian glaciation in Western Gondwana. Palaeogeography Palaeoclimatology Palaeoecology, 123:373383.Google Scholar
Valentine, J. W. 2007. Seeing ghosts: Neoproterozoic bilaterian body plans, p. 369375. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publications 286.Google Scholar
Veis, A. F., Vorob'Eva, N. G., and Golubkova, E. Y. 2006. The early Vendian microfossils first found in the Russian Plate: Taxonomic composition and biostratigraphic significance. Stratigraphy and Geological Correlation, 14(4):368385.Google Scholar
Vidal, G. 1990. Giant acanthomorph acritarchs from the upper Proterozoic in southern Norway. Palaeontology, 33:287298.Google Scholar
Vidal, G., and Moczydlsowska, M. 1995. The Neoproterozoic of Baltica: Stratigraphy, palaeobiology and general geological evolutin. Precambrian Research, 73:197216.Google Scholar
Vorob'Eva, N. G., Sergeev, V. N., and Chumakov, N. M. 2008. New finds of early Vendian microfossils in the Ura Formation: Revision of the Patom Complex age, middle Siberia. Doklady Earth Sciences, 419A:411416.Google Scholar
Vorob'Eva, N. G., Sergeev, V. N., and Semikhatov, M. A. 2006. Unique lower Vendian Kel'tma microbiota, Timan ridge: New evidence for the paleontological essence and global significance of the Vendian system Doklady Earth Sciences, 40:10381043.Google Scholar
Waggoner, B. 2003. The Ediacaran biotas in space and time. Integrative and Comparative Biology, 43:104113.Google Scholar
Walter, M. R., Veevers, J. J., Calver, C. R., Gorjan, P., and Hill, A. C. 2000. Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambrian Research, 100:371433.Google Scholar
Willman, S., and Moczydlsowska, M. 2008. Ediacaran acritarch biota from the Giles 1 drillhole, Officer Basin, Australia, and its potential for biostratigraphic correlation. Precambrian Research, 162:498530.Google Scholar
Wood, R. A., Grotzinger, J. P., and Dickson, J. A. D. 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science, 296:23832386.Google Scholar
Xiao, S. 2004a. Neoproterozoic glaciations and the fossil record, p. 199214. In Jenkins, G. S., McMenamin, M., Sohl, L. E., and McKay, C. P. (eds.), The Extreme Proterozoic: Geology, Geochemistry, and Climate. American Geophysical Union (AGU), Washington DC.Google Scholar
Xiao, S. 2004b. New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic, Yangtze Gorges, South China). Journal of Paleontology, 78(2):393401.Google Scholar
Xiao, S., Bao, H., Wang, H., Kaufman, A. J., Zhou, C., Li, G., Yuan, X., and Ling, H. 2004. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: Evidence for a post-Marinoan glaciation. Precambrian Research, 130:126.Google Scholar
Xiao, S., Hagadorn, J. W., Zhou, C., and Yuan, X. 2007a. Rare helical spheroidal fossils from the Doushantuo Lagerstätte: Ediacaran animal embryos come of age? Geology, 35:115118.Google Scholar
Xiao, S., and Knoll, A. H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China. Lethaia, 32:219240.Google Scholar
Xiao, S., Yuan, X., and Knoll, A. H. 2000. Eumetazoan fossils in terminal Proterozoic phosphorites? Proceedings of the National Academy of Sciences, USA, 97(25):1368413689.Google Scholar
Xiao, S., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391:553558.Google Scholar
Xiao, S., Zhou, C., and Yuan, X. 2007b. Un-dressing and redressing Ediacaran embryos. Nature, 446:E910.Google Scholar
Yao, J., Xiao, S., Yin, L., Li, G., and Yuan, X. 2005. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, north-west China): Systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs from China. Palaeontology, 48:687708.Google Scholar
Yin, L., Zhu, M., Knoll, A. H., Yuan, X., Zhang, J., and Hu, J. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446:661663.CrossRefGoogle ScholarPubMed
Yuan, X., and Hofmann, H. J. 1998. New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Weng'an, Guizhou Province, southwestern China. Alcheringa, 22:189222.Google Scholar
Zang, W., and Walter, M. R. 1992. Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. The Association of Australasia Palaeontologists, Memoir 12:1132.Google Scholar
Zhang, S., Jiang, G., Zhang, J., Song, B., Kennedy, M. J., and Christie-Blick, N. 2005. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 33:473476.Google Scholar
Zhang, Y., Yin, L., Xiao, S., and Knoll, A. H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. Journal of Paleontology, 72 (supplement)(4):152.Google Scholar
Zhou, C., Brasier, M. D., and Xue, Y. 2001. Three-dimensional phosphatic preservation of giant acritarchs from the terminal Proterozoic Doushantuo Formation in Guizhou and Hubei provinces, South China. Palaeontology, 44(6):11571178.Google Scholar
Zhou, C., and Xiao, S. 2007. Ediacaran δ13C chemostratigraphy of South China. Chemical Geology, 237:89108.Google Scholar
Zhou, C., Xie, G., McFadden, K., Xiao, S., and Yuan, X. 2007. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and biostratigraphic significance. Geological Journal, 42:229262.Google Scholar
Zhu, M., Zhang, J., and Yang, A. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography Palaeoclimatology Palaeoecology, 254:761.Google Scholar
Zhu, S., Yan, Y., and Chen, H. 1994. The Middle-Upper Proterozoic on southern margin of North China Platform, p. 192199. In Zhu, S., Xing, Y., and Zhang, P. (eds.), Biostratigraphic Sequence of the Middle-Upper Proterozoic on North China Platform. Geological Publishing House, Beijing.Google Scholar