Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T06:20:01.724Z Has data issue: false hasContentIssue false

Experimental Decay of Soft Tissues

Published online by Cambridge University Press:  21 July 2017

Robert S. Sansom*
Affiliation:
Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
Get access

Abstract

The exceptionally preserved fossil record of soft tissues sheds light on a wide range of evolutionary episodes from across geological history. Understanding how soft tissues become hard fossils is not a trivial process. A powerful tool in this context is experimentally derived decay data. By studying decay in a laboratory setting and on a laboratory timescale, an understanding of the processes and patterns underlying soft-tissue preservation can be achieved. The considerations and problems particular to experimental decay are explored here in terms of experimental aims, design, variables, and utility. Aims in this context can relate to either reconstruction of the processes of soft-tissue preservation, or to elucidation of the patterns of morphological transformation and data loss occurring during decay. Experimental design is discussed in terms of hypotheses and relevant variables: i.e., the subject organism being decayed (phylogeny, ontogeny, and history), the environment of decay (biological, chemical, and physical) and the outputs (how to measure decay). Variables and practical considerations are illustrated with reference to previous experiments. The principles behind application of experimentally derived decay data to the fossil record are illustrated with three case studies: the interpretation of fossil color, feasibility of fossil embryos, and phylogenetic bias in chordate preservation. A rich array of possibilities for further decay experiments exists and it is hoped that the methodologies outlined herein will provide guidance and a conceptual framework for future studies.

Type
Research Article
Copyright
Copyright © 2014 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. A. 1988. The role of anoxia in the decay and mineralization of proteinaceous macro-fossils. Paleobiology, 14:139154.CrossRefGoogle Scholar
Allison, P. A. 1990. Variation in rates of decay and disarticulation of Echinodermata: Implications for the application of actualistic data. PALAIOS, 5:432440.Google Scholar
Allison, P. A. 2001. Decay, p. 270273. In Briggs, D. E. G. and Crowther, P. R. (eds.), Paleobiology II. Wiley-Blackwell.CrossRefGoogle Scholar
Arnosti, C., Jorgensen, B. B., Sagemann, J., and Thamdrup, B. 1998. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction. Marine Ecology Progress Series, 165:5970.CrossRefGoogle Scholar
Barden, H. E., Wogelius, D., Li, D., Manning, P. L., Edwards, N. P., and Van Dongen, B. E. 2011. Morphological and geochemical evidence of eumelanin preservation in the feathers of the Early Cretaceous bird Gansus yumenensis . PLos ONE, 6:e25495.CrossRefGoogle ScholarPubMed
Breder, C. M. 1957. A note on preliminary stages in the fossilization of fishes. Copeia, 3:662663.Google Scholar
Briggs, D. E. G. 1995. Experimental taphonomy. PALAIOS, 10:539550.CrossRefGoogle Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Reviews in Earth and Planetary Sciences, 31:275301.CrossRefGoogle Scholar
Briggs, D. E. G., Erwin, D. H., and Collier, F. J. 1994. The Fossils of the Burgess Shale. Smithson Institution Press, Washington, D. C.Google Scholar
Briggs, D. E. G., Evershed, R. P., and Lockheart, M. J. 2000. The biomolecular palaeontology of continental fossils. Paleobiology, 26:169193.CrossRefGoogle Scholar
Briggs, D. E. G., and Kear, A. J. 1993a. Decay and preservation of polychaetes: taphonomic thresholds in soft-bodied organisms. Paleobiology, 19:107135.Google Scholar
Briggs, D. E. G., and Kear, A. J. 1993b. Fossilization of soft tissue in the laboratory. Science, 259:14391442.CrossRefGoogle ScholarPubMed
Briggs, D. E. G., and Kear, A. J. 1994a. Decay and mineralization of shrimps. PALAIOS, 9:431456.CrossRefGoogle Scholar
Briggs, D. E. G., and Kear, A. J. 1994b. Decay of Branchiostoma: implications for soft-tissue preservation in conodonts and other primitive chordates. Lethaia, 26:275287.Google Scholar
Briggs, D. E. G., Kear, A. J., Baas, M., de Leeuw, J. W., and Rigby, S. 1995. Decay and composition of the hemichordate Rhabdopleura: implications for the taphonomy of graptolites. Lethaia, 28:1523.Google Scholar
Briggs, D. E. G., and Wilby, P. R. 1996. The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils. Journal of the Geological Society, 153:665668.Google Scholar
Brock, F., Parkes, R. J., and Briggs, D. E. G. 2006. Pyrite formation associated with decay of plant material. PALAIOS, 21:499506.CrossRefGoogle Scholar
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative Comparative Biology, 43:166177.Google Scholar
Conway Morris, S. 2008. A redescription of a rare chordate, Metaspriggina walcotti Simonetta and Insom, from the Burgess Shale (Middle Cambrian), British Columbia, Canada. Journal of Paleontology, 82:424430.CrossRefGoogle Scholar
Conway Morris, S., and Caron, J.-B. 2014. A primitive fish from the Cambrian of North America. Nature, 512:419422. doi:10.1038/nature13414.CrossRefGoogle Scholar
Cunningham, J. A., Thomas, C.-W., Bengtson, S., Stampanoni, M., Turner, F. R., Bailey, J. V., Raff, R. A., Raff, E. C., and Donoghue, P. C. J. 2012a. Experimental taphonomy of giant sulphur bacteria: implications for the interpretations of the embryo like Ediacara Doushantuo fossils. Proceedings of the Royal Society, 279:18571864.Google Scholar
Cunningham, J. A., Thomas, C.-W., Bengtson, S., Kearns, S. L., Xiao, S., Marone, F., Stampanoni, M., and Donoghue, P. C. J. 2012b. Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians. Proceedings of the Royal Society of London B-Biological Sciences, 279:23692376.Google Scholar
Darroch, S. A. F., Laflamme, M., Schiffbauer, J. D., and Briggs, D. E. G. 2012. Experimental formation of a microbial death mask. PALAIOS, 27:293303.Google Scholar
Donoghue, P. C. J., and Purnell, M. A. 2009. Distinguishing heat from light in the debate over controversial fossils. BioEssays, 31:178189.CrossRefGoogle ScholarPubMed
Duncan, I. J., Titchener, F., and Briggs, D. E. G. 2003. Decay and disarticulation of the cockroach: Implications for preservation of the blattoids of Writhlington (Upper Carboniferous), UK. PALAIOS, 18:256265.Google Scholar
Fedewa, L. A., and Lindel, A. 2005. Inhibition of growth for select gram-negative bacteria by tricaine methane sulfonate (MS-222). Journal of Herpetological Medicine and Surgery, 15:1317.CrossRefGoogle Scholar
Freedman, K. 1999. Aspects of the taphonomy of jawless vertebrates. Unpublished Ph.D. dissertation, University of Leicester, 166 p.Google Scholar
Foth, C. 2012. On the identification of feather structures in stem-line representatives of birds: evidence from fossils and actuopalaeontology. Paläontologische Zeitschrift, 86:91102.CrossRefGoogle Scholar
Gaines, R. R., Hammarlund, E. U., Hou, X., Qi, C., Gabbott, S. E., Zhao, Y., Peng, J., and Canfield, D. E. 2012. Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Science of the United States of America, 109:51805184.CrossRefGoogle ScholarPubMed
Gostling, N. K., Dong, X., and Donoghue, P. C. J. 2009. Ontogeny and taphonomy: An experimental taphonomy study of the development of the brine shrimp Artemia salina . Palaeontology, 52:169186.Google Scholar
Gostling, N. J., Thomas, C.-W., Greenwood, J. M., Dong, X., Bengtson, S., Raff, E. C., Raff, R. R., Begnan, B. M., Stampanoni, M., and Donoghue, P. C. J. 2008. Deciphering the fossil record of early bilaterian embryonic development in light of experimental taphonomy. Evolution & Development, 10:339349.Google Scholar
Gupta, N. S. 2011. Transformation of chitinous tissues in elevated pressure-temperature conditions: Additional insights from experiments on plant tissues, p. 153168. In Gupta, N. S. (ed.), Chitin Formation and Diagenesis. Springer, London.Google Scholar
Gupta, N. S., Michels, R., Briggs, D. E. G., Evershed, R. P., and Pancost, R. D. 2006. The organic preservation of fossil arthropods: an experimental study. Proceedings of the Royal Society of London B-Biological Sciences, 273:27772783.Google Scholar
Gupta, N. S., and Pancost, R. D. 2004. Biomolecular and physical taphonomy of angiosperm leaf during early decay: Implications for fossilization. PALAIOS, 19:428440.2.0.CO;2>CrossRefGoogle Scholar
Gupta, N. S., and Summons, R. E. 2011. Fate of chininous organisms in the geosphere, p. 133152. In Gupta, N. S. (ed.), Chitin Formation and Diagenesis. Springer, London.CrossRefGoogle Scholar
Hammarlund, E., Canfield, D. E., Bengston, S., Mygind Leth, P., Schillinger, B., and Calzada, E. 2011. The influence of sulfate concentration on soft-tissue decay and preservation. Palaeontolographica Canadiana, 31:141156.Google Scholar
Hippler, D., Hu, N., Steiner, M., Scholtz, G., and Franz, G. 2012. Experimental mineralization of crustacean eggs: new implications for the fossilization of Precambrian–Cambrian embryos. Biogeosciences, 9:17651775.CrossRefGoogle Scholar
Hof, C. H. J., and Briggs, D. E. G. 1997. Decay and mineralization of mantis shrimps (Stomatopoda: Crustacea)—A key to their fossil record. PALAIOS, 12:420438.CrossRefGoogle Scholar
Huldtgren, T., Cunningham, J. A., Yin, C., Stampanoni, M., Marone, F., Donoghue, P. C. J., and Bengston, S. 2011. Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science, 334:16961699.CrossRefGoogle ScholarPubMed
Iniesto, M., Lopez-Archilla, A. I. Fregenal-Martínez, M., Buscalioni, A. D., and Guerrero, M. C. 2013. Involvement of microbial mats in delayed decay: an experimental essay on fish preservation. PALAIOS, 28:5666.CrossRefGoogle Scholar
Kidwell, S. M., and Baumiller, T. 1990. Experimental disintegration of regular echinoids: Roles of temperature, oxygen, and decay thresholds. Paleobiology, 16:247271.Google Scholar
Li, Q., Clarke, J. A., Zhou, C. F., Meng, Q., Li, D., D'Alba, L., and Shawkey, M. D. 2014. Melanosome evolution indicates a key physiological shift within feathered dinosaurs. Nature, 507:350353.Google Scholar
Li, Q., Gao, K.-Q., Vinther, J., Shawkey, M. D., Clarke, J. A., D'Alba, L., Meng, Q.-J., Briggs, D. E. G., and Prum, R. O. 2010. Plumage color patterns of an extinct dinosaur. Science, 327:1369–72. doi:10.1126/science.1186290 CrossRefGoogle ScholarPubMed
Martin, D., Briggs, D. E. G., and Parkes, J. 2004. Experimental attachment of sediment particles to invertebrate eggs and the preservation of soft-bodied fossils. Journal of the Geological Society, 161:735738.Google Scholar
Martin, D., Briggs, D. E. G., and Parkes, J. 2005. Decay and mineralization of invertebrate eggs. PALAIOS, 20:562572.CrossRefGoogle Scholar
McNamara, M. E. 2013. The taphonomy of colour in fossil insects and feathers. Palaeontology, 56:557575.CrossRefGoogle Scholar
McNamara, M. E., Briggs, D. E. G., Orr, P. J., Field, D. J., and Wang, Z. 2013a. Experimental maturation of feathers: implications for reconstructions of fossil feather colour. Biology Letters, 9:20130184. doi: 10.1098/rsbl.2013.0184 Google Scholar
McNamara, M. E., Briggs, D. E. G., Orr, P. J., Gupta, N. S., Locatelli, E. R., Qiu, L., Yang, H., Wang, Z., Noh, H., and Cao, H. 2013b. The fossil record of color illuminated by maturation experiments. Geology, 41:487490.CrossRefGoogle Scholar
Monge-Nájera, J., and Hou, X. 2002. Experimental taphonomy of velvet worms (Onychophora) and implications for the Cambrian “explosion, disparity and decimation” model. Revista de Biología Tropical, 50:11331138.Google ScholarPubMed
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 2008. Taphonomy of exceptionally preserved crustaceans from the Upper Carboniferous of Southeastern Ireland. PALAIOS, 23:298312.CrossRefGoogle Scholar
Page, A., Gabbott, S. E., Wilby, P. R., and Zalasiewicz, J. A. 2008. Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks. Geology, 36:855858.CrossRefGoogle Scholar
Parsons-Hubbard, K. M., Powell, E. N., Raymond, A., Walker, S. E., Brett, C., Aston-Alcox, K., Shepard, R. N., Krause, R., and Deline, B. 2008. The taphonomic signature of a brine seep and the potential for Burgess Shale style preservation. Journal of Shellfish Research, 27:227239.Google Scholar
Raff, E. C., Andrews, M. E., Turner, F. R., Toh, E., Nelson, D. E., and Raff, R. A. 2013. Contingent interactions among biofilm-forming bacteria determine preservation or decay in the first steps toward fossilization of marine embryos. Evolution & Development, 15:243256.CrossRefGoogle ScholarPubMed
Raff, E. C., Schollaert, K. L., Nelson, D. E., Donoghue, P. C. J., Thomas, C.-W., Turner, F. R., Stein, B. D., Don, X., Bengtson, S., Huldtgren, T., Stampanoni, M., Chongyu, Y., and Raff, R. A. 2008. Embryo fossilization is a biological process mediated by microbial biofilms. Proceedings of the National Academy of Sciences of the United States of America, 105:1935919364.Google ScholarPubMed
Raff, E. C., Villinski, J. T., Turner, F. R., Donoghue, P. C. J., and Raff, R. A. 2006. Experimental taphonomy shows the feasibility of fossil embryos. Proceedings of the National Academy of Sciences of the United States of America, 103:58465851.Google Scholar
Sageman, J., Bale, S. J., Briggs, D. E. G., and Parkes, R. J. 1999. Controls on the formation of authigenic minerals in associations with decaying organic matter: An experimental approach. Geochimica et Cosmochimica Acta, 63:10831095.CrossRefGoogle Scholar
Sansom, R. S., Freedman, K., Gabbott, S. E., Aldridge, R. J., and Purnell, M. A. 2010a. Taphonomy and affinity of an enigmatic Silurian vertebrate, Jamoytius kerwoodi White. Palaeontology, 53:13931409.Google Scholar
Sansom, R. S., Gabbott, S. E., and Purnell, M. A. 2010b. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463:797800.Google Scholar
Sansom, R. S., Gabbott, S. E., and Purnell, M. A. 2011. Decay of vertebrate characters in hagfish and lamprey (Cyclostomata) and the implications for the vertebrate fossil record. Proceedings of the Royal Society of London B-Biological Sciences, 278:11501157.CrossRefGoogle ScholarPubMed
Sansom, R. S., Gabbott, S. E., and Purnell, M. A. 2013. Atlas of vertebrate decay: A visual and taphonomic guide to fossil interpretation. Palaeontology, 56:457474.Google Scholar
Sansom, R. S., and Wills, M. A. 2013. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Scientific Reports, 3:2545.CrossRefGoogle ScholarPubMed
Skawina, A. 2010. Experimental decay of gills in freshwater bivalves as a key to understanding their preservation in Upper Triassic lacustrine deposits. PALAIOS, 25:215220.Google Scholar
Vinther, J., Briggs, D. E. G., Prum, R. O., and Saranathan, V. 2008. The colour of fossil feathers. Biological Letters, 4:522525.Google Scholar
Xiao, S., and Knoll, A. H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China. Lethaia, 32:219240.CrossRefGoogle ScholarPubMed
Xiao, S., and Laflamme, M. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology & Evolution, 24:3140.CrossRefGoogle ScholarPubMed