Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T14:26:52.638Z Has data issue: false hasContentIssue false

Environmental Change at High Latitudes

Published online by Cambridge University Press:  21 July 2017

Marianne S. V. Douglas*
Affiliation:
Canadian Circumpolar Institute and Department of Earth and Atmospheric Sciences University of Alberta 1–26 Earth Sciences Building Edmonton, Alberta, Canada, T6G 2E3
Get access

Abstract

Paleolimnological techniques have been used successfully to reconstruct environmental change in the Arctic and Antarctic. Diatoms are powerful indicators of environmental change because their community composition responds to changes in environmental conditions. As more regional diatom calibrations throughout the high latitude regions are achieved, the autecology of diatom taxa can be quantified and transfer functions for the driving environmental variables developed. In most instances, environmental variables related to physical, chemical, and climate-related characteristics are the main drivers affecting diatom distribution across polar aquatic bodies. A decline in ice cover and increase in growing season length results in an increase in diatom diversity as well as increased productivity, and increased thermal stratification in lakes (vs. shallow ponds). Because the siliceous cell wall preserves well in sediments, diatoms are among the most commonly used organisms used in paleolimnological analyses. Polar latitudes are experiencing amplification of the current global warming trend and as such, analyses of diatoms from high latitude lake and pond sediments are revealing the timing and extent of these trends. Diatom-based paleolimnological analyses are also being used to track the environmental impact of excess nutrient additions to lakes. Similar findings have also been reported from marine ecosystems.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ACIA. 2004. Impacts of a warming Arctic. Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, England, 1046 p.Google Scholar
Antoniades, D., and Douglas, M. S. V. 2002. Characterization of high arctic stream diatom assemblages from Cornwallis Island, Nunavut, Canada. Canadian Journal of Botany, 80:5058.Google Scholar
Antoniades, D., Douglas, M. S. V., and Smol, J. P. 2005. Quantitative estimates of recent environmental changes in the Canadian High Arctic inferred from diatoms in lake and pond sediments. Journal of Paleolimnology, 33:349360.Google Scholar
Birks, H. J. B. and Birks, H. H. 1980. Quaternary Paleoecology. University Park Press, Baltimore, Maryland, 289 p.Google Scholar
Bouchard, G., Gajewski, K., and Hamilton, P. B. 2004. Freshwater diatom biogeography in the Canadian Arctic Archipelago. Journal of Biogeography, 31:19551973.Google Scholar
Buffen, A., Leventer, A., Rubin, A. and Hutchins, T. 2007. Diatom assemblages in surface sediments of the northwestern Weddell Sea, Antarctic Peninsula. Marine Micropaleontology, 62:730.Google Scholar
Denis, D., Crosta, X., Zaragosi, S., Romero, O., Martin, B., and Mas, V. 2006. Seasonal and sub seasonal climate changes recorded in laminated diatom ooze sediments, Adeline Land, East Antarctica. The Holocene, 16:11371147.Google Scholar
Douglas, M. S. V., Hamilton, P. M. B., Pienitz, R., and Smol, J. P. 2004. Algal indicators of environmental change in arctic and antarctic lakes and ponds, p. 117157. In Pienitz, R., Douglas, M. S. V., and Smol, J. P. (eds.), Long-Term Environmental Change in Arctic and Antarctic Lakes. Springer, Amsterdam, The Netherlands.Google Scholar
Douglas, M. S. V., Ludlam, S. D., and Feeney, S. 1996. Changes in diatom assemblages in Lake C2 (Ellesmere Island, Arctic Canada): Response to basin isolation from the sea and to other environmental changes. Journal of Paleolimnology, 16:217226.Google Scholar
Douglas, M. S. V., and Smol, J. P. 1993. Freshwater diatoms from high arctic ponds (Cape Herschel, Ellesmere Island, N.W.T.), Nova Hedwigia, 57:511552.Google Scholar
Douglas, M. S. V., and Smol, J. P. 1995. Epiphytic diatom assemblages from high arctic ponds. Journal of Phycology, 31: 6069.Google Scholar
Douglas, M. S. V., and Smol, J. P. 1999. Freshwater diatoms as indicators of environmental change in the High Arctic. p. 227244. In Stormier, E.F., and Smol, J.P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.Google Scholar
Douglas, M. S. V., and Smol, J. P. 2000. Eutrophication and recovery in the High arctic: Meretta Lake (Cornwallis Island, Nunavut, Canada) revisited. Hydrobiology, 431:193204.CrossRefGoogle Scholar
Douglas, M. S. V., Smol, J. P., and Blake, W. Jr. 1994. Marked post-18th century environmental change in high-arctic ecosystems. Science, 266:416419.Google Scholar
Douglas, M. S. V., Smol, J. P., Savelle, J. M., and Blais, J. M. 2004. Prehistoric Inuit Whalers affected Arctic freshwater ecosystems. Proceedings of the National Academies of Sciences, 101:16131617.Google Scholar
Esposito, R. M. M., Horn, S. L., McKnight, D. M., Cox, M. J., Grant, M. C., Spaulding, S. A., Doran, P. T., and Cozzetto, K. D. 2006. Antarctic climate cooling and response of diatoms in glacial meltwater streams. Geophysical Research Letters, 33: Art. No. L07406.Google Scholar
Fallu, M. A., and Pienitz, R. 1999. Diatomées lacustres de Jamésie-Hudsonie (Québec) et modèle de reconstitution des concentrations de carbone organique dissous. Écoscience, 6:606620.Google Scholar
Foged, N. 1953. Diatoms from West Greenland. Meddelelser om Grönland, 147:186.Google Scholar
Foged, N. 1973. Diatoms from Southwest Greenland. Meddelelser om Grönland, 194:184.Google Scholar
Foged, N. 1981. Diatoms in Alaska. Bibliotheca Phycologica, 53:131.Google Scholar
Garrison, D. L., Gibson, A., Coale, S. L., Gowing, M. M., Okolodkov, Y. B., Fritsen, C. H. AND, Jeffries, M. O. 2005. Sea-ice microbial communities in the Ross Sea: Autumn and summer biota. Marine Ecology-Progress Series, 300:3952.Google Scholar
Gibson, J. A. E., Roberts, D., and Van De Vijver, B. 2006. Salinity control of the distribution of diatoms in lakes of the Bunger Hills, East Antarctica. Polar Biology, 29:694704.Google Scholar
Hay, M. B., Smol, J. P., Pipke, K., and Lesack, L. 1997. A diatom-based paleohydrological model for the Mackenzie Delta, Northwest Territories, Canada. Arctic and Alpine Research, 29:430440.CrossRefGoogle Scholar
Hiscock, W. T., and Millero, F. J. 2005. Nutrient and carbon parameters during the Southern Ocean iron experiment (SOFeX), Deep-Sea Research Part 1 – Oceanographic Research Papers, 52:20862108.Google Scholar
Hodgson, D. A., Roberts, D., McMinn, A., Verleyen, E., Bruce, T., Corbett, C., and Vyverman, W. 2006. Recent rapid salinity rise in three East Antarctic lakes. Journal of Paleolimnology, 36: 385406.Google Scholar
IPCC. 2007. Climate Change 2007: The Physical Science Basics. Contribution of Working Group 1 to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. WMO/UNEP, 21 p.Google Scholar
Joynt, E. H. III and Wolfe, A. P. 2001. Paleoenvironmental inference models from sediment diatom assemblages in Baffin Island lakes (Nunavut, Canada) and reconstruction of summer water temperature. Canadian Journal of Fisheries and Aquatic Science, 58:12221243.Google Scholar
Katsuki, K., and Takahashi, K. 2005. Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary. Deep-Sea Research Part II-Tropical Studies in Oceanography, 52:21102130.Google Scholar
Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J. T., Bartlein, P. T., Brubaker, L. B., Coats, L. L., Cwynar, L. C., Duvall, M. L., Dyke, A. S., Edwards, M. E., Eisner, W. T., Gajewski, K., Geirsdottir, A., Hu, F. S., Jennings, A. E., Kaplan, M. R., Kerwin, M. W., Lozhkin, A. V., Macdonald, G. M., Miller, G. H., Mock, C. J., Oswald, W. W., Ottobliesner, B. L., Porinchu, D. F., Rühland, K., Smol, J. P., Steig, E. J., and Wolfe, B. B. 2004. Holocene thermal maximum in the western Arctic (0 - 180°W). Quaternary Science Reviews, 23:529560.Google Scholar
Kemp, A. E. S., Pearce, R. B., Grigorov, I., Rance, J., Lange, C. B., Quilty, P., and Salter, I. 2006. Production of giant marine diatoms and their export at oceanic frontal zones: implications for Si and C flux from stratified oceans. Global Biogeochemical cycles, 20(4); Art. No. GB4SO4.Google Scholar
Korhola, A., Sorvari, S., Rautio, M., Appleby, P. G., Dearing, J. A., Hu, Y., Rose, N., Lami, A., and Cameron, N. G. 2002. A multi-proxy analysis of climate impacts on the recent development of subarctic Lake Saanajarvi in Finnish Lapland. Journal of Paleolimnology, 28:5977.Google Scholar
Laing, T.E., and Smol, J.P. 2000. Factors influencing diatom distributions in circumpolar treeline lakes of northern Russia. Journal of Phycology, 36:10351048.Google Scholar
Leblanc, K., Hare, C. E., Boyd, P. W., Bruland, K. W., Sohst, B., Pickmere, S., Lohan, M. C., Buck, K., Ellwood, M., and Hutchins, D. A. 2005. Fe and Zn effects on the Si cycle and diatom community structure in two contrasting high and low-silicate HNLC areas, Deep-Sea Research Part 1. Oceanographic Research Papers, 52:18421864.CrossRefGoogle Scholar
Lim, D. S. S., Douglas, M. S. V., and Smol, J. P. 2001a. Diatoms and their relationship to environmental variables from lakes and ponds Bathurst Island, Nunavut, Canadian High Arctic. Hydrobiologia, 450:215230.Google Scholar
Lim, D. S. S., Kwan, C., and Douglas, M. S. V. 2001b. Periphytic diatom assemblages from Bathurst Island, Nunavut, Canadian High Arctic: An examination of community relationships and habitat preferences. Journal of Phycology, 37:379393.Google Scholar
Ludlam, S., Feeney, S., and Douglas, M. S. V. 1996. Changes in the importance of lotic and littoral diatoms in a high arctic lake over the last 191 years. Journal of Paleolimnology, 16:184204.Google Scholar
Michelutti, N., Douglas, M. S. V., and Smol, J. P. 2002. Tracking recent recovery from eutrophication in a high arctic lake (Meretta Lake, Cornwallis Island, Nunavut, Canada) using fossil diatom assemblages. Journal of Paleolimnology, 28:377381.Google Scholar
Michelutti, N., Douglas, M. S. V., and Smol, J. P. 2003a. Diatom response to recent climatic change in a high arctic lake (Char Lake, Cornwallis Island, Nunavut). Global and Planetary Change, 38:257271.Google Scholar
Michelutti, N., Douglas, M. S. V., and Smol, J. P. 2007. Evaluating diatom community composition in the absence of marked limnological gradients in the high Arctic: a surface sediment calibration set from Cornwallis Island (Nunavut, Canada). Polar Biology, DOI 10.1007/s00300-007-0307-x.Google Scholar
Michelutti, N., Holtham, A. J., Douglas, M. S. V. and Smol, J. P. 2003b. Periphytic diatoms assemblages from ultra-oligotrophic and UV transparent lakes and ponds on Victoria Island, and comparisons to other diatom surveys in the Canadian Arctic. Journal of Phycology, 39:465480.Google Scholar
Moser, K. A., Korhola, A., Weckstrom, J., Blom, T., Pienitz, R., Smol, J. P., Douglas, M. S. V., and Hay, M. B. 2000. Paleohydrology inferred from diatoms in northern latitude regions. Journal of Paleolimnology, 24:93107.Google Scholar
Pienitz, R., and Smol, J. P. 1993. Diatom assemblages and their relationship to environmental variables in lakes near Yellowknife (N.W.T., Canada). Hydrobiologia, 269/270:391404.Google Scholar
Pienitz, R., Smol, J. P., and Macdonald, G. 1999. Paleolimnological reconstruction of Holocene climatic trends from two boreal treeline lakes, Northwest Territories, Canada. Arctic, Antarctic and Alpine Research, 31:8293.Google Scholar
Rühland, K., and Smol, J. P. 2005. Diatom shifts as evidence for recent Subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 226:116.Google Scholar
Rühland, K., Priesnitz, A., and Smol, J. P. 2003. Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian Arctic treeline. Arctic, Antarctic and Alpine Research, 35:110123.Google Scholar
Smol, J.P. 1983. Paleophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Canadian Journal of Botany, 61:2195–204.Google Scholar
Smol, J. P., and Douglas, M. S. V. In press. From controversy to consensus: Making the case for recent climatic change in the Arctic using lake sediments. Frontiers in Ecology and the Environment.Google Scholar
Smol, J. P., and Douglas, M. S. V. 2007. Tracking the final ecological threshold in high Arctic ponds. Proceedings of the National Academy of Sciences, 104:1239512397.CrossRefGoogle Scholar
Smol, J. P., Wolfe, A. P., Birks, H. J. B., Douglas, M. S. V., Jones, V. J., Korhola, A., Pienitz, R., Rühland, K., Sorvari, S., Antoniades, D., Brooks, S. J., Fallu, M. A., Hughes, M., Keatley, B. E., Laing, T. E., Michelutti, N., Nazarova, L., Nyman, M., Paterson, A. M., Perren, B., Quinlan, R., Rautio, M., Saulnier-Talbot, E., Siitonen, S., Solovieva, N., and Weckstrom, J. 2005. Climate-driven regime shirts in the biological communities of arctic lakes. Proceedings of the National Academies of Sciences. 102:43974402.Google Scholar
Sorvari, S., Korhola, A., and Thomson, R. 2002. Lake diatom response to recent Arctic warming in Finnish Lapland. Global Change Biology, 8:171181.Google Scholar
Spaulding, S. A. and McKnight, D. M. 1999. Diatoms as indicators of environmental change in Antarctic freshwaters. p. 245263. In Stoermer, E.F., and Smol, J.P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.Google Scholar
Stewart, K. A., Lamoureux, S. F., and Forbes, A. C. 2005. Hydrological controls on the diatom assemblage of a seasonal arctic river: Boothia Peninsula, Nunavut, Canada. Hydrobiologia, 544:259270.CrossRefGoogle Scholar
Veres, A. J., Pienitz, R., and Smol, J. P. 1995. Lake water salinity and periphytic diatom succession in three subarctic lakes, Yukon Territory, Canada, Arctic. 48:6370.Google Scholar
Wolfe, A. P., Cooke, C. A. and Hobbs, W. O. 2006. Are current rates of atmospheric nitrogen deposition influencing lakes in the Eastern Canadian Arctic? Arctic, Antarctic and Alpine Research, 38:465476.Google Scholar
Wolfe, A. P., and Härtling, J. W. 1996. The late Quaternary development of three ancient tarns on southwestern Cumberland Peninsula, Baffin Island, Arctic Canada: Paleolimnological evidence from diatoms and sediment chemistry. Journal of Paleolimnology, 15:118.Google Scholar
Yoo, K. C., Yoon, H. I., Park, B. K., and Kim, Y. 2006. Advance of the outlet glaciers during regional warming as inferred from late Holocene massive diamicton in the King George Island fjords, the South Shetland Islands, West Antarctica. Quaternary Research, 65: 5769.Google Scholar