Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T11:22:39.210Z Has data issue: false hasContentIssue false

The echinoderm classes Stylophora and Homoiostelea: non Calcichordata

Published online by Cambridge University Press:  21 July 2017

R. L. Parsley*
Affiliation:
Department of Geology, Tulane University, New Orleans, Louisiana, 70118, USA
Get access

Abstract

Stylophora and Homoiostelea are the largest classes of the subphylum Homalozoa. They have also been placed in the Calcichordata but that position is herein rejected. Stylophorans are divided into two orders the Cornuta and Ankyroida: cornutes have asymmetrical thecae, aulacophores with stylocones and cover plates over the food groove that open widely; ankyroids have essentially bilaterally symmetrical thecae, aulacophores with styloids and in most the cover plates do not open widely. Epispires, cothurnopores, and lamellipores in cornutes are respiratory structures not atypical of early echinoderms and are only superficially similar to chordate gill slits. The superior and inferior faces of cornute and ankyroid thecae and the aulacophores are homologous. There is no evidence that ‘mitrates’ (most ankyroids) are inverted or their aulacophores(calcichordate tail) have been lost and re-evolved.

Homoiosteles are superficially similar to stylophorans: the column or stele resembles the aulacophore and the theca in younger genera develope distinct marginal and somatic plate patterns. The earliest homoiosteles are attached by a holdfast, at least in juvenile stages, and this fixation may have imprinted some morphological features on steles of vagile genera. Earliest homoiosteles share significant characters with coeval species of the eocrinoid Gogia and it serves as outgroup.

Cladograms for Stylophora and Homoiostelea were generated by NONA, a phylogenetic program for personal computers.

Type
Research Article
Copyright
Copyright © 1997 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrande, J. 1887. Systême Silurien de centre de la Bohême. Part 1: recherches paléontologiques, vol. 7, classe des echinodermes, sec. 1, ordre des cystidées. Rivnav, Prague and Gerhard, Leipzig, 233 p.Google Scholar
Bather, F. A. 1913. Caradocian Cystidea from Girvan. Transactions of the Royal Society of Edinburgh, 49:359529.Google Scholar
Caster, K. E. 1952. Concerning Enoploura of the Upper Ordovician and its relation to other carpoid Echinodermata. Bulletins of American Paleontology, 34:147.Google Scholar
Caster, K. E. 1967. Homoiostelea, p. S581S627. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S, Echinodermata 1. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Cripps, A. P. 1989. A new genus of stem chordate (Cornuta) from the lower and Middle Ordovician of Czechoslovakia and the origin of bilateral symmetry in the chordates. Geobios, 22(2): 215245.Google Scholar
Cripps, A. P. 1989. A new stem-group chordate (Cornuta) from the Llandeilo of Czechoslovakia and the cornute mitrate transition. Zoological Journal Linnean Society, 96:4985.Google Scholar
Cripps, A. P. 1990. A new stem craniate from the Ordovician of Morocco and the search for the sister group of the craniata. Zoological Journal Linnean Society, 100:2771.Google Scholar
Cripps, A. P. 1991. A cladistic analysis of the cornutes (stem chordates). Zoological Journal of the Linnean Society, 102:333366.Google Scholar
Cripps, A. P. and Daley, P. 1994. Two chordates from the Middle Ordovician (Llandeilo) of Normandy, France and a reinterpretation of Milonicystis kerfornei. Palaeontographica, Abhandlungen A, 232:99132.Google Scholar
Daley, P. E. J. 1992. The anatomy of the solute Girvanicystis batheri (?Chordate) from the Upper Ordovician of Scotland and a new species of Girvanicystis, from the Upper Ordovician of South Wales. Zoological Journal of the Linnean Society, 105:353375.Google Scholar
Daley, P. E. J. 1995. Anatomy, locomotion and ontogeny of the solute Castericystis vali from the Middle Cambrian of Utah. Geobios 28, 5:585615.Google Scholar
Daley, P. E. J. 1996. The first solute which is attached as an adult: a mid-Cambrian fossil from Utah with echinoderm and chordate affinities. Zoological Journal of the Linnean Society, 117:405440.Google Scholar
Dehm, T. 1934. Untersuchungen über Cystoídeen des rheinischen Unterdevons. Sitzungberichte der bayerischen Akademie der Wissenschaften, 1934,1943.Google Scholar
Gee, H. 1996. Before the Backbone, Views on the Origin of the Vertebrates. Chapman and Hall, London.Google Scholar
Gill, E. D., and Caster, K. E. 1960. Carpoid echinoderms from the Silurian and Devonian of Australia. Bulletin of American Paleontology, 41:171.Google Scholar
Hecker, R. 1940. Carpoidea, Eocrinoidea i Ophiocistia nizhnego silura Leningradskoi oblasti i Estonii. Trudy Paleontologicheskogo Instituta Akademii Nauk, 9:582.Google Scholar
Jaekel, O. 1901. Über Carpoideen, eine nene klasse von Pelmatozoen. Zeitschrift der deutschen geologischen Gesellschaft, 52:661677.Google Scholar
Jaekel, O. 1918 (1921). Phylogenie and system der pelmatozoen. Paläontologische Zeitschrift 3, 1128.Google Scholar
Jefferies, R. P. S. 1973. The Ordovician fossil Lagynocystis pyramidalis and the ancestry of amphioxus. Philosophical Transactions of the Royal Society, B265:409469.Google Scholar
Jefferies, R. P. S. 1981. In defence of calcichordates. Zoological Journal Linnean Society. 73:351396.Google Scholar
Jefferies, R. P. S. 1986. The Ancestry of the Vertebrates. British Museum (Natural History) and Cambridge University Press, London and Cambridge.Google Scholar
Jefferies, R. P. S. 1990. The solute Dendrocystoides scoticus from the Upper Ordovician of Scotland and the ancestry of chordates and echinoderms. Palaeontology, 33:631679.Google Scholar
Jefferies, R. P. S., and Prokop, R. J. 1972. A new calcichordate from the Ordovician of Bohemia and its anatomy, adaptations, and relationships. Biological Journal of the Linnean Society, 4:69115.Google Scholar
Goloboff, P. A. 1993. Estimating character weights during tree search. Cladistics, 9:8391.Google Scholar
Kirk, E. 1911. The structure and relationships of certain eleutherozoic Pelmatozoa. Proceedings of the U.S. National Museum, 41:1137.Google Scholar
Kolata, D. R. 1973. Scalenocystites strimplei, a new Ordovician belemnocystitid from Minnesota. Journal of Paleontology, 47:969974.Google Scholar
Kolata, D. R., Strimple, H. L., and Levorson, C. O. 1977. Revision of the carpoid family Iowacystidae. Palaeontology, 20:529557.Google Scholar
Kolata, D. R., and Guensburg, T. E. 1979. Diamphidiocystis, a new mitrate “carpoid” from the Cincinnatian (Upper Ordovician) Maquoketa Group in Southern Illinois. Journal of Paleontology, 53:11211135.Google Scholar
Kolata, D. R., and Jollie, M. 1982. Anomalocystitid mitrates (Stylophora—Echinodermata) from the Champlainian (Middle Ordovician) Guttenberg Formation of the Upper Mississippi Valley region. Journal of Paleontology, 56:631653.Google Scholar
Lefebvre, B., Racheboeuf, P., and David, B. In press. Homologies in stylophoran echinoderms. In Mooi, R. (ed.), Echinoderms: San Francisco. A. A. Balkema, Rotterdam.Google Scholar
Parsley, R. L. 1972. The Belemnocystitidae: solutan homeomorphs of the Anomalocystitidae. Journal of Paleontology, 46:341347.Google Scholar
Parsley, R. L. 1988. Feeding and respiratory strategies in stylophora, p. 347361. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford Science Publications and Liverpool Geological Society, Oxford and Liverpool.Google Scholar
Parsley, R. L. 1991. Review of selected North American mitrates stylophorans (Homalozoa: Echinodermata). Bulletins of American Paleontology, 100:157.Google Scholar
Parsley, R. L. 1994. Mitrocystitid functional morphology, evolution and their relationships with other primitive echinoderm classes, p. 167172. In David, B., Guille, B., Féral, J.-P., and Roux, M. (eds.), Echinoderms Through Time. A. A. Balkema, Rotterdam.Google Scholar
Parsley, R. L. In press. Taxonomic Revisions of the Stylophora. In Mooi, R. (ed.), Echinoderms: San Francisco. A. A. Balkema, Rotterdam.Google Scholar
Parsley, R. L., and Caster, K. E. 1965. North American Soluta (Carpoidea, Echinodermata). Bulletins of American Paleontology, 49:109174.Google Scholar
Peterson, K. J. 1995. A phylogenetic test of the calcichordate scenario. Lethaia, 28:2538.Google Scholar
Rozhnov, S. V., and Jefferies, R. P. S. 1996. A new stem-chordate solute from the Middle Ordovician of Estonia. Geobios, 29:1:91109.Google Scholar
Sumrall, C. 1996. A phylogenetic analysis of Echinodermata based in primitive fossil taxa. Unpublished Ph.D. Dissertation, University of Texas at Austin.Google Scholar
Thomas, A. O., and Ladd, H. S. 1926. Additional cystoids and crinoids from the Maquoketa shale of Iowa. University of Iowa Studies, Natural History, Papers on Geology, 2:8:518.Google Scholar
Ubaghs, G. 1961. Sur la nature de l'organe appelé Fig C ou pedoncale chez les carpöides Cornuta et Mitrata. Academie Sciences, Paris, Comptes Rendus Séances, 253:27382740.Google Scholar
Ubaghs, G. 1963. Cothurnocystis Bather, Phyllocystis Thoral and an undetermined member of the order Soluta (Echinodermata: Carpoidea) in the uppermost Cambrian of Nevada. Journal of Paleontology, 37:11331142.Google Scholar
Ubaghs, G. 1963. Rhopalocystis destombesi n.g. n.sp. Eocrinöide de l'Ordovicien inférior (Tremadocien superieur) de Sud marocain. Servis Geologic Marocain, 23:172:2544.Google Scholar
Ubaghs, G. 1967. Stylophora, p. S495S565. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S., Echinodermata 1. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Ubaghs, G. 1969. Les échinodermes carpoïdes de l'Ordovician infërieur de la Montagne Noire (France). Cahiers de Paléontologie, Paris, Centre National de la Recherche Scientifique, 112 p.Google Scholar
Ubaghs, G. 1979. Trois Mitrata (Echinodermata: Stylophora) nouveaux de l'Ordovician de Tchécoslovaquie. Paläontologische Zeitschrift, 53:98119.Google Scholar
Ubaghs, G. 1991. Deux Stylophora (Homalozoa, Echinodermata) nouveaus pour l'Ordovician inferior de la Montague Noir (France Meridionale). Paläontologische Zeitschrift, 65:157171.Google Scholar