Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T06:57:22.978Z Has data issue: false hasContentIssue false

Deep Time Paleobiology: Stromatolites–A Key to Decoding Primitive Ecosystems on Earth and Beyond

Published online by Cambridge University Press:  21 July 2017

Abigail C. Allwood*
Affiliation:
California Institute of Technology Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109
Get access

Abstract

Finding the beginning of Earth's fossil record is a long-standing palaeontological challenge arising from the quest to understand the origin of life. Research in recent years has necessarily focused on determining the existence (or otherwise) of fossils in the Early Archaean rock record. Nonetheless, despite numerous reports of microfossils(?) and stromatolites, consensus on the existence of life in the Early Archaean has been elusive (e.g. Moorbath, 2005). However, new techniques and approaches are allowing more confident interpretation of the Archaean fossil record, and the nature of the earliest biosignatures can be used to inform our understanding of emergent ecosystems on Earth and perhaps on other terrestrial planets.

Evidence is mounting that microbial ecosystems may have had a firm foothold as early as ~3.5 Ga (Tice and Lowe, 2004; Schopf, 2006; Hofmann et al., 1999; Allwood et al., 2006, 2007b; Westall et al., 2006; Westall and Southam, 2006). Significantly, there is now also evidence that the Early Archaean record may not be as meager and cryptic as previously thought. For example, the 3.43 Ga Strelley Pool Chert of the Pilbara Craton of Western Australia contains kilometer-scale tracts of a fossilized stromatolite (microbial?) reef (Allwood et al., 2006, 2007b) and provides a large suite of evidence that is consistent with life's existence. Moreover, the rapidity with which the Strelley Pool reef established itself on a newly-submerged landmass suggests that life was well established by that time, waiting in the wings in planktonic form until conditions favored sessile biofilm formation. The rich vault of information in such rocks as the Strelley Pool Chert may shed light not only upon life's antiquity, but also on the nature of early organisms and ecosystems, the environments that nurtured them, the processes that aided preservation of biosignatures and the palaeontological approaches needed to interpret them. This in turn will be a valuable guide in the search for—and interpretation of—ancient microbial biosignatures in the geologic record of other planets or moons.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allwood, A. C., Anderson, M. S., Burch, I. W., and Coleman, M. L. 2008. Genesis of 3.43 billion year old conical stromatolites: geochemical imaging, spectroscopy and microfacies analysis in recrystallized reef margin accretionary structures. Astrobiology, 8:319.Google Scholar
Allwood, A. C., Walter, M. R., and Burch, I. W. 2007a. Stratigraphy and Facies of the 3.43 Ga Strelley Pool Chert in the Southwest North Pole Dome. Western Australia Geological Survey. Record, 2007/11, 28 p.Google Scholar
Allwood, A. C., Walter, M. R., Burch, I. W., and Kamber, B. S. 2007b. 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth. Precambrian Research, 158:198227.Google Scholar
Allwood, A.C., Walter, M. R., Kamber, B. S., and Burch, I. W. 2006. Stromatolite reef from the Early Archaean era of Australia. Nature, 414: 714718.Google Scholar
Awramik, S. M., Schopf, J. W., Walter, M. R., Weber, R., and Guerrero, J. C. 1983. Filamentous fossil bacteria from the Archaean of Western Australia. Precambrian Research, 20:357374.Google Scholar
Awramik, S. M. and Grey, K. 2005. Stromatolites: biogenicity, biosignatures, and bioconfusion. Proceedings of SPIE (online), 5906, 59060P.Google Scholar
Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., Steele, A., and Grassineau, N. V. 2002. Questioning the evidence for Earth's oldest fossils. Nature, 416:7681.Google Scholar
Brasier, M., Green, O., Lindsay, J. and Steele, A. 2004. Earth's oldest (approximately 3.5 Ga) fossils and the “Early Eden hypothesis”; questioning the evidence, p. 257269. In Luisi, P.L. (ed.), Origins of Life and Evolution of the Biosphere. Kluwer Academic Publishers, Dordrecht.Google Scholar
Brasier, M. D., Green, O. R., Lindsay, J. F., McLoughlin, N., Steele, A., and Stoakes, C. 2005. Critical testing of Earth's oldest putative fossil assemblage from the approximately 3.5 Ga Apex Chert, Chinaman Creek, Western Australia. Precambrian Research, 140:55102.CrossRefGoogle Scholar
Brasier, M. D., McLoughlin, N., Green, O., and Wacey, D. 2006. A fresh look at the fossil evidence for Early Archaean cellular life. Philosophical Transactions of the Royal Society, B 361:887902.Google Scholar
Buick, R., Dunlop, J. S. R., and Groves, D. I. 1981. Stromatolite recognition in ancient rocks: An appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa, 5:161181.Google Scholar
Byerly, G. R., Lower, D. R., and Walsh, M. M. 1986. Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature, 319:489491.CrossRefGoogle Scholar
Grotzinger, J. P. and Knoll, A. H. 1995. Anomalous Carbonate Precipitates: Is the Precambrian the Key to the Permian? Palaios, 10:578596.Google Scholar
Grotzinger, J. P. and Knoll, A. H. 1999. Stromatolites in Precambrian carbonates; evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27:313358.CrossRefGoogle ScholarPubMed
Grotzinger, J. P., and Rothmann, D. H. 1996. An abiotic model for stromatolite morphogenesis. Nature, 383:423425.Google Scholar
Grotzinger, J. P., Arvidson, R. E., Bell, J. F. III, Calvin, W., Clark, B. C., Fike, D. A., Golombek, M., Greeley, R., Haldemann, A., Herkenhoff, K. E., Jolliff, B. L., Knoll, A. H., Malin, M., McLennan, S. M., Parker, T., Soderblom, L., Sohl-Dickstein, J. N., Squyres, S. W., Tosca, N. J., and Watters, W. A. 2005. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 40:1172.Google Scholar
Hoffman, P. 1976. Stromatolite morphogenesis in Shark Bay, Western Australia, p. 261271. In Walter, M. R. (ed) Stromatolites: Developments in Sedimentology 20. Elsevier Science, Amsterdam.CrossRefGoogle Scholar
Hofmann, H. J. 1973. Stromatolites; Characteristics and Utility. Earth-Science Reviews, 9:339373.CrossRefGoogle Scholar
Hofmann, H. J. 1994. Quantitative stromatolitology. Journal of Palaeontology, 68:704709.Google Scholar
Hofmann, H. J., Grey, K., Hickman, A. H., and Thorpe, R. I. 1999. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. GSA Bulletin, 111:12561262.2.3.CO;2>CrossRefGoogle Scholar
Hofmann, H. J. 2000. Archaean stromatolites as microbial archives, p. 315327. In Riding, R.E. and Awramik, S.M. (eds), Microbial Sediments. Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
Lindsay, J. F., Brasier, M. D., McLaughlin, N., Green, O. R., Fogel, M., Steele, A., and Mertzmann, S. A. 2005. The problem of deep carbon; an Archaean paradox. Precambrian Research, 143:122.Google Scholar
Lowe, D. R. 1980. Stromatolites 3,400–3,500 Myr old from the Archaean of Western Australia. Nature, 284:441443.Google Scholar
Lowe, D. R. 1983. Restricted shallow-water sedimentation of early Archaean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Research, 19:239283.Google Scholar
Lowe, D. R. 1992. Probable non-biological origin of pre-3.2 Ga-old “stromatolites” in the Barberton and Pilbara greenstone belts. Geological Society of America Abstracts with Programs, Boulder, p.137.Google Scholar
Lowe, D. R. 1994. Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387390.Google Scholar
McLennan, S. M., Bell, J. F., Calvin, W. M., Christensen, P. R., Clark, B. C., De Souza, P. A., Farmer, J., Farrand, W. H., Fike, D. A., Gellert, R., Ghosh, A., Glotch, T. D., Grotzinger, J. P., Hahn, B., Herkenhoff, K. E., Hurowitz, J. A., Johnson, J. R., Johnson, S. S., Jolliff, B., Klingelhöfer, G., Knoll, A. H., Learner, Z., Malin, M. C., McSween, H. Y., Pocock, J., Ruff, S. W., Soderblom, L. A., Squyres, S. W., Tosca, N. J., Watters, W. A., Wyatt, M. B., and Yen, A. 2005. Provenance and diagenesis of the evaporitebearing Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240:95121,CrossRefGoogle Scholar
Moorbath, S. 2005. Dating earliest life. Nature, 434:155.CrossRefGoogle ScholarPubMed
Pope, M and Grotzinger, J. P. 1999. Controls on fabric development and morphology of tufas and stromatolites, uppermost Pethei Group (1.8 Ga), Great Slave Lake, Northwest Canada. In Grotzinger, J.P. and James, N.P. (eds), Precambrian Carbonates. Society of Economic Palaeontology and Mineralogy Special Publication.Google Scholar
Schopf, J. W. 1993. Microfossils of the early Archaean Apex Chert; new evidence of the antiquity of life. Science, 260:640646.Google Scholar
Schopf, J. W. 2006. Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society B, 361:869885.Google Scholar
Schopf, J. W. and Packer, B. M. 1987. Early Archaean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:7073.Google Scholar
Semikhatov, M. A., Gebelein, C. D., Cloud, P., Awramik, S. M., and Benmore, W. C. 1979. Stromatolite morphogenesis—progress and problems. Canadian Journal of Earth Sciences, 19:9921015.CrossRefGoogle Scholar
Tice, M. D., and Lowe, D. R. 2004. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature, 431:549552.CrossRefGoogle Scholar
Ueno, Y., Isozaki, Y., Yurimoto, H., and Maruyama, S. 2001. Carbon isotopic signatures of individual Archaean microfossils (?) from Western Australia. International Geology Review, 43:196212.Google Scholar
Van Kranendonk, M. J., Webb, G. E., and Kamber, B. S. 2003. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology 1: 91108.Google Scholar
Van Kranendonk, M. J., Hickman, A. H., Smithies, R. H., Williams, I. R., Bagas, L., and Farrell, T. R. 2006. Revised lithostratigraphy of Archaean supracrustal and intrusive rocks in the northern Pilbara Craton, Western Australia. Western Australia Geological Survey Record, 2006/15, 57 p.Google Scholar
Walsh, M. M. 1972. Microfossils and possible microfossils from the early Archaean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Research, 54:271293.Google Scholar
Walsh, M. M. and Lowe, D. R. 1985. Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Baberton Mountain Land, South Africa. Nature, 314:530532.Google Scholar
Walter, M. R., Bauld, J., and Brock, T. D. 1976. Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park, p. 273310. In Walter, M.R. (ed.), Stromatolites: Developments in Sedimentology 20. Elsevier, Amsterdam.Google Scholar
Walter, M. R., 1976, Stromatolites: Developments in Sedimentology. Elsevier, Amsterdam.Google Scholar
Walter, M. R., Buick, R., and Dunlop, J. S. R. 1980. Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284:443445.Google Scholar
Walter, M. R., 1983. Archaean stromatolites: evidence of the Earth's earliest benthos, p. 187213. In Schopf, J. W. (ed.), Earth's Earliest Biosphere. Princeton University Press, Princeton.Google Scholar
Westall, F., De Vries, S. T., Nijman, W., Rouchon, V., Orberger, B., Pearson, V., Watson, J., Verchovsky, A., Wright, I., Rouzaud, J.-N., Marchesini, D., and Anne, S. 2006. The 3.466 Ga Kitty's Gap Chert, an Early Archaean microbial ecosystem, p. 105131. In Reimold, W.U. and Gibson, R. (eds.), Processes on the Early Earth. Geological Society of America Special Publication.Google Scholar
Westall, F., and Southam, G. 2006. Early Life on Earth, p. 283384. In Benn, K. (ed.), Archaean Geodynamics and Environments. American Geophysical Union Geophysical Monograph.Google Scholar
Westall, F., Walsh, M. M., De Vries, S. T., and Nijman, W. 2001. Fossil microbial biofilms from Early Archaean volcaniclastic sediments, p.266268. In Cassidy, K.F., Dunphy, J.M., and Van Kranendonk, M.J. (eds.), Australian Geological Survey Organisation Report, 2001/37.Google Scholar