Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T13:18:11.913Z Has data issue: false hasContentIssue false

Cryptospores: The Origin and Early Evolution of the Terrestrial Flora

Published online by Cambridge University Press:  21 July 2017

Paul K. Strother*
Affiliation:
Weston Observatory of Boston College, Department of Geology & Geophysics, 381 Concord Road, Weston, MA 02493 USA
Get access

Extract

The Cryptogamic, or spore-producing, plants of today are composed of three nonvascular, bryophyte groups (mosses, liverworts, and hornworts) and several vascular groups (ferns, club mosses, and horsetails). All of these plants produce abundant spores, which serve as propagules for dispersing and, to some extent, preserving plants through periods of ecological stress. Plant spores are typically formed as the end products of meiosis (reduction division) from a dividing sporocyte, or spore mother cell (smc). Because of this, they typically occur in groups of four, with each individual spore bearing a characteristic trilete, or Y-shaped mark on its common contact surface. Spore walls, composed of an inert, heterogeneous polymer called sporopollenin, are extremely resistant to the chemical vicissitudes of the terrestrial environment. This property of typical plant spores ultimately allows them to be quite abundant in fine grained clastic rocks. Although fossilized spores represent only a small part of the once-living plant, in many cases, they represent an important component of the plant fossil record, especially when the preservation of macroscopic tissues is lacking.

Type
Research Article
Copyright
Copyright © 2000 by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, A. W., Gunning, B. E. S. and John, P. C. L. 1972. Sporopollenin in the cell wall of Chlorella and other algae: ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures. Planta, 107:132.CrossRefGoogle Scholar
Batten, D. J. 1996. Chapter 7D. Colonial Chlorococcales, p. 191204. In Jansonius, J. and McGregor, D. C. (eds.) Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation: Salt Lake City, Utah. Google Scholar
Beck, J. H. 1998. Paleopalynology of the Silurian Arisaig Group, Nova Scotia. Ph.D. Dissertation, Boston University, 300 p.Google Scholar
Beck, J. H., and Strother, P.K. 1997. Acritarchs from the Silurian Section at Arisaig, Nova Scotia, Canada: Paleoecology. Acta Universitatis Carolinae, Geologica, 40(1996):321334.Google Scholar
Beck, J. H., and Strother, P.K. 1999. Silurian plant diversity as determined from spores and cryptospores from the central Appalachians, U.S.A. American Association of Stratigraphic Palynologists, 32nd Annual Meeting. Program and Abstracts: 12.Google Scholar
Brown, R. C. and Lemmon, B. E. 1991. Sporogenesis in simple land plants, p. 924. In Blakemore, S. and Barnes, S. H. (eds.) Pollen and Spores, Systematics Association Volume 44. Clarendon Press, Oxford.Google Scholar
Butterfield, N. J., Knoll, A. H. and Swett, K. 1994. Paleobiology of he Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34:184.Google Scholar
Burgess, N. D. 1991. Silurian cryptospores and miospores from the type Llandovery area, south-west Wales. Palaeontology, 34:575599.Google Scholar
Burgess, N. D., and Richardson, J. B. 1991. Silurian cryptospores and miospores from the type Wenlock area, Shropshire, England. Palaeontology, 34: 601628.Google Scholar
Burgess, N. D., and Richardson, J. B. 1995. Late Wenlock to Early Prídolí cryptospores and miospores from south and southwest Wales, Great Britain. Palaeontographica B, 236:144.Google Scholar
Combaz, A. 1968. Un microbios de Trémadocien dans un sondage d'Hass-Messaoud. Actes de la Société Linne de Bordeaux, 104B (20):426.Google Scholar
Cotter, E. 1983. Shelf, paralic, and fluvial environments and eustatic sea-level fluctuations in the origin of the Tuscarora Formation (Lower Silurian) of Central Pennsylvania. Journal of Sedimentary Petrology, 53(1):2549.Google Scholar
Dufka, P. 1995. Upper Wenlock miospores and cryptospores derived from a Silurian volcanic island in the Prague Basin (Barrandian area, Bohemia). Journal of Micropalaeontology, 14:6779.Google Scholar
Edwards, D., Duckett, J. G. and Richardson, J. B. 1995. Hepatic characters in the earliest land plants. Nature, 374:635636.Google Scholar
Fanning, U., Richardson, J. B. and Edwards, D. 1991. A review of in situ spore in Silurian land plants, p. 2547. In Blakemore, S. and Barnes, S. H. (eds.) Pollen and Spores, Systematics Association Volume 44. Clarendon Press, Oxford.CrossRefGoogle Scholar
Farley, M. 1994. Modern pollen transport and sedimentation: an annotated bibliography, 503524, In Traverse, A. (ed.) 1994. Sedimentation of Organic Particles. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Foerster, J. W. 1971. Environmentally induced morphological changes in Oöcystis lacustris Chodat (Chlorophyta). Bulletin of the Torrey Botanical Club, 98: 225227.Google Scholar
Foerster, J. W. 1973. The fate of freshwater algae entering an estuary, p. 387420. In Stevenson, L. H. and Colwell, R. R. (eds.). Estuarine Microbial Ecology. University of South Carolina Press, Columbia, South Carolina.Google Scholar
Gray, J. 1985. The microfossil record of early land plants: Advances in understanding of early terrestrialization, 1970–1984. Philosophical Transactions of the Royal Society of London, B309:167195.Google Scholar
Gray, J., 1991. Tetrahedraletes, Nodospora, and the ‘cross’ tetrad: an accretion of myth, 4987. In Blakemore, S., Barnes, S. H. (eds.) Pollen and Spores, Systematics Association Volume 44. Clarendon Press, Oxford.Google Scholar
Gray, J., 1993. Major Paleozoic land plant evolutionary bio-events. Palaeogeography Palaeoclimatology Palaeoecology, 104:153169.Google Scholar
Gray, J., and Boucot, A. 1971. Early Silurian spore tetrads from New York: earliest New World evidence for vascular plants? Science, 173:918921.Google Scholar
Hagström, J. 1997. Land-derived palynomorphs from the Silurian of Gotland, Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 119:301306.Google Scholar
Johnson, N. 1985. Early Silurian palynomorphs from the Tuscarora Formation in central Pennsylvania and their paleobotanical significance. Review of Palaeobotany and Palynology, 45:307360.Google Scholar
Knoll, A. H., and Golubic, S. 1979. Anatomy and taphonomy of a Precambrian stromatolite. Precambrian Research, 101:15151.Google Scholar
Knoll, A. H., and Swet, K. 1985. Micropalaeontology of the Late Proterozoic Veteranen Group, Spitsbergen. Palaeontology, 28(3):451473.Google Scholar
Lang, W. H. 1937. On the plant-remains from the Downtonian of England and Wales. Philosophical Transactions of the Royal Society of London, B544(227):245291.Google Scholar
Legg, I. C. 1985. Trace fossils from a Middle Cambrian deltaic sequence, north Spain, p. 151165. In, Curran, H. A. (ed.) Biogenic structures: Their use in interpreting depositional environments, SEPM Special Publication No. 35.Google Scholar
Margulis, L., Hinkle, G., McKhann, H., Moynihan, B., and Brown, S. 1988. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta) – an intertidal alga forming achlorophyllous desiccation-resistant cysts. Arch. Hydrobiol. Suppl., 78(4):425446.Google Scholar
McClure, H. A. 1988. Chitinozoan and acritarch assemblages, stratigraphy and biogeography of the Early Palæozoic of northwest Arabia. Review of Palaeobotany and Palynology, 56:4160.CrossRefGoogle Scholar
McKee, E. D., and Resser, C. E. 1945. Cambrian history of the Grand Canyon Region. Carneige Institution of Washington, Publication 563: 232 p.Google Scholar
Miller, M., and Eames, L. 1982. Palynomorphs from the Silurian Medina Group (Lower Llandovery) of the Niagara Gorge, Lewiston, New York, U.S.A. Palynology, 6:221254.Google Scholar
Muller, J. 1959. Palynology of Recent Orinoco delta and shelf sediments. Micropaleontology, 5:132.Google Scholar
Peat, C. J., Muir, M. D., Plumb, K. A., McKirdy, D. M., and Norvick, M. S. 1978. Proterozoic microfossils from the Roper Group, Northern territory, Australia. BMR Journal of Australian Geology and Geophysics, 3:117.Google Scholar
Pittau, P. 1985. Tremadocian (Early Ordovician) acritarchs of the Arburese Unit, southwest Sardinia (Italy). Bollettino della Società Paleontologica Italiana, 23(2): 161204.Google Scholar
Pratt, L. M., Phillips, T., and Dennison, J. M. 1978. Evidence of non-vascular land plants from the early Silurian (Llandoverian) of Virginia, U.S.A. Review of Palaeobotany and Palynology, 25:121149.Google Scholar
Richardson, J. B. 1988. Late Ordovician and Early Silurian cryptospores and miospores from northeast Libya, p. 89109. In El-Arnauti, A., Owens, B. and Thusu, B. (eds.) Subsurface Palynostratigraphy of Northeast Libya. Benghazi: Garyounis University. Press.Google Scholar
Richardson, J. B. 1996a. Chapter 18A. Lower and middle Palaeozoic records of terrestrial palynomorphs, p. 555574. In Jansonius, J. and McGregor, D. C. (eds.) Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation: Salt Lake City, Utah. Google Scholar
Richardson, J. B. 1996b. Taxonomy and classification of some new early Devonian cryptospores from England. Special Papers in Palaeontology, 55:740.Google Scholar
Richardson, J. B., Ford, J., and Parker, F. 1984. Miospores correlation and the age of some Scottish Lower Old Red Sandstone sediments from the Strathmore Region. Journal of Micropalaeontology, 3(2): 109124.Google Scholar
Richardson, J. B., and Rasul, S. M. 1990. Palynofacies in a late Silurian regressive sequence in the Welsh Borderlands and Wales. Journal of the Geological Society of London, 147:675686.Google Scholar
Schopf, J. W., and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia. Journal of Paleontology, 43:111118.Google Scholar
Shute, C. H., Hemsley, A. R., and Strother, P. K. 1996. Reassessment of dyads contained in a Silurian rhyniophytoid sporangium. Special Papers in Palaeontology, 55:137145.Google Scholar
Snedden, J. W., Nummendal, D., and Amos, A. F. 1988. Storm- and fair-weather combined flow on the central Texas continental shelf. Journal of Sedimentary Petrology, 58(4):580595.Google Scholar
Strother, P. K. 1991. A classification schema for the cryptospores. Palynology, 15: 219236.Google Scholar
Strother, P. K. 1996. Chapter 5. Acritarchs, p. 81106. In Jansonius, J. and McGregor, D. C. (eds.) Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation: Salt Lake City, Utah. Google Scholar
Strother, P. K., and Beck, J. 2000. Spore-like microfossils from Middle Cambrian strata: expanding the meaning of the term cryptospore, p. 413424. In Harley, M. M., Morton, C. M. and Blackmore, S. (eds.) Pollen and Spores: Morphology and Biology, Royal Botanic Gardens, Kew.Google Scholar
Strother, P. K., Al-Hajri, S. and Traverse, A. 1996. New evidence for land plants from the lower Middle Ordovician of Saudi Arabia. Geology, 24(1): 5558.2.3.CO;2>CrossRefGoogle Scholar
Strother, P. K., Al-Hajri, S. and Traverse, A. 1979. Plant microfossils from Llandoverian and Wenlockian rocks of Pennsylvania. Palynology, 3:121.Google Scholar
Strother, P. K., and Wood, G. 2000. Evidence of terrestrial plants by Middle Cambrian time. Northeast GSA Abstracts with Programs, 32 (1): A-76.Google Scholar
Taylor, W. A. 1995a. Ultrastructure of Tetrahedraletes medinensis (Strother and Traverse) Wellman and Richardson, from the upper Ordovician of southern Ohio. Review of Palaeobotany and Palynology, 85(3): 183187.Google Scholar
Taylor, W. A., 1995b. Spores in the earliest land plants. Nature, 373:391392.CrossRefGoogle Scholar
Taylor, W. A. 1996. Ultrastructure of lower Paleozoic dyads from southern Ohio. Review of Palaeobotany and Palynology, 92:269279.Google Scholar
Taylor, W. A. 1999. Preliminary analysis of early land plant spores and cryptospores from the Cambrian through the upper Silurian. XVI International Botanical Congress, (St Louis), abstract 2003.Google Scholar
Traverse, A. (ed.) 1994. Sedimentation of Organic Particles. Cambridge University Press, Cambridge, 544 p.Google Scholar
Vavrdová, M. 1982. Recycled acritarchs in the uppermost Ordovician of Bohemia. Cnasopis pro Mineralogii a Geologii, 27(4):337345.Google Scholar
Vavrdová, M. 1984. Some plant microfossils of possible terrestrial origin from the Ordovician of central Bohemia. Vestník Ustredniho ustavu geologickeho, 59(3): 165170.Google Scholar
Vavrdová, M. 1988. Further acritarchs and terrestrial plant remains from the late Ordovician at Hlásná Trnebann (Czechoslovakia). Cnasopis pro Mineralogii a Geologii, 33(1): 110.Google Scholar
Vavrdová, M. 1989. New acritarchs and miospores from the late Ordovician of Hlásná Trnebann, Czechoslovakia. Cnasopis pro Mineralogii a Geologii, 34(4):403419.Google Scholar
Vavrdová, M. 1990a. Early Ordovician acritarchs from the locality Myto near Rokycany (late Arenig, Czechoslovakia). Cnasopis pro Mineralogii a Geologii, 35(3):239250.Google Scholar
Vavrdová, M. 1990b. Coenobial acritarchs and other palynomorphs from the Arenig/Llanvirn boundary, Prague Basin. Venstník Ustrnedniho ustavu geologickeho, 65(4):237242.Google Scholar
Wellman, C. H. 1996. Cryptospores from the type area of the Caradoc Series in southern Britain. Special Papers in Palaeontology, 55:103136.Google Scholar
Wellman, C. H., Edwards, D. and Axe, L. 1998a. Permanent dyads in sporangia and spore masses from the Lower Devonian of the Welsh Borderland. Botanical Journal of the Linnean Society, 127:117147.Google Scholar
Wellman, C. H., Edwards, D. and Axe, L. 1998b. Ultrastructure of laevigate hilate spores in sporangia and spore masses from the Upper Silurian and Lower Devonian of the Welsh Borderland. Philosophical Transactions of the Royal Society, London, B353:19832004.Google Scholar
Wellman, C. H., and Richardson, J. B. 1993. Terrestrial plant microfossils from Silurian inliers of the Midland Valley of Scotland. Palaeontology, 36: 55193.Google Scholar
Wellman, C. H., and Richardson, J. B. 1996. Sporomorph assemblages from the ‘Lower Old Red Sandstone’ of Lorne, Scotland. Special Papers in Palaeontology, 55:1101.Google Scholar