Published online by Cambridge University Press: 21 July 2017
How Earth and organisms interacted in the past is one of the largest questions in paleobiology. Observed histories of organisms and Earth environments need to be linked under a set of uniformitarian assumptions to address this question. Functional morphology, which studies how organismal body parts interact with their physical environments, is an important tool in establishing the link. Being uniformitarian or ergodic, functional morphology is most robust when directly incorporating physical (or mechanical) principles into hypotheses and their tests. Such ‘physical functional morphology’ may not be always possible, but the number of examples is slowly increasing. Once a series of robust functional inferences are made, it may be possible to study its correlation or correspondence with the historical record of environmental proxies. This framework was applied to the Mesozoic marine reptiles Ichthyopterygia, which is known for the evolution of fish-shaped body profiles in the derived clade Parvipelvia. A suite of evidence suggests that parvipelvians had advanced cruising ability and dark-adapted vision that were lacking in the more basal forms, which they replaced during the major marine transgression between the latest Anisian (Middle Triassic) and the middle Norian (Late Triassic). The ability to forage in broader expanses of and deeper water may have enabled parvipelvians to survive when shallow water environments became reduced during the major regression phase, but much more study is needed to test such an inference.