Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T07:04:30.815Z Has data issue: false hasContentIssue false

Beyond the Big Five: Extinctions as Experiments in the History of Life

Published online by Cambridge University Press:  21 July 2017

Rowan Lockwood*
Affiliation:
Department of Geology The College of William and Mary P.O. Box 8795 Williamsburg, VA 23187
Get access

Abstract

The past century has witnessed a number of significant breakthroughs in the study of extinction in the fossil record, from the discovery of a bolide impact as the probable cause of the end-Cretaceous (K/T) mass extinction to the designation of the “Big 5” mass extinction events. Here, I summarize the major themes that have emerged from the past thirty years of extinction research and highlight a number of promising directions for future research. These directions explore a central theme—the evolutionary consequences of extinction— and focus on three broad research areas: the effects of selectivity, the importance of recovery intervals, and the influence of spatial patterns. Examples of topics explored include the role that trait variation plays in survivorship, the comparative effects of extinctions of varying magnitudes on evolutionary patterns, the re-establishment of macroevolutionary patterns in the aftermath of extinction, and the extent to which spatial autocorrelation affects extinction patterns. These topics can be approached by viewing extinctions as repeated natural experiments in the history of life and developing hypotheses to explicitly test across multiple events. Exploring the effects of extinction also requires an interdisciplinary approach, applying evolutionary, ecological, geochronological, geochemical, tectonic, and paleoclimatic tools to both extinction and recovery intervals.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Adrain, J. M., and Westrop, S. R. 2000. An empirical assessment of taxic paleobiology. Science, 289:110112.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fursich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences of the United States of America, 98:62616266.Google Scholar
Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary boundary extinction. Science, 208:10951108.Google Scholar
Ausich, W. I., and Peters, S. E. 2005. A revised macroevolutionary history for Ordovician-Early Silurian crinoids. Paleobiology, 31:538551.Google Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: A connection between terrestrial diversification and change in the marine biosphere. Geobios, 32:131144.Google Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences, 34:127155.Google Scholar
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences of the United States of America, 99:68546859.Google Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology, 30:522542.Google Scholar
Benton, M. J. 1993. The Fossil Record 2. Chapman and Hall, London, 864 p.Google Scholar
Bowersox, J. R. 2005. Reassessment of extinction patterns of Pliocene molluscs from California and environmental forcing of extinction in the San Joaquin Basin. Palaeogeography Palaeoclimatology Palaeoecology, 221:5582.Google Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology, 112:625642.Google Scholar
Bush, A. M., Markey, M. J., and Marshall, C. R. 2004. Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling-standardization. Paleobiology, 30:666686.Google Scholar
Cherns, L., and Wright, V. P. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonitic dissolution in a Silurian sea. Geology, 28:791794.Google Scholar
Ciampaglio, C. N. 2004. Measuring changes in articulate brachiopod morphology before and after the Permian mass extinction event: do developmental constraints limit morphological innovation? Evolution & Development, 6:260274.Google Scholar
Clemens, W. A. 2002. Evolution of the mammalian fauna across the Cretaceous-Tertiary boundary in northeastern Montana and other areas of the Western Interior, p. 217245. In Hartman, J. H., Johnson, K. R., and Nichols, D. J. (eds.), The Hell Creek Formation and the Cretaceous-Tertiary Boundary in the Northern Great Plains; An Integrated Continental Record of the End of the Cretaceous. Volume 61.Google Scholar
Coxall, H. K., D'Hondt, S., and Zachos, J. C. 2006. Pelagic evolution and environmental recovery after the Cretaceous-Paleogene mass extinction. Geology, 34:297300.Google Scholar
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B. A., and Maxwell, P. A. 2003. Estimating the rock volume bias in paleobiodiversity studies. Science, 301:358360.Google Scholar
Eldredge, N. 1997. Extinction and the evolutionary process, p. 6073. In Abe, T., Levin, S. A., and Higashi, M. (eds.), Biodiversity: an ecological perspective. Springer, Berlin.Google Scholar
Erwin, D. H. 1993. The Great Paleozoic Crisis: Life and Death in the Permian. Columbia University Press, New York.Google Scholar
Erwin, D. H. 1996a. The mother of mass extinctions. Scientific American, 275:7278.Google Scholar
Erwin, D. H. 1996b. Understanding biotic recoveries: extinction, survival, and preservation during the end-Permian mass extinction, p. 398418. In Jablonski, D., Erwin, D., and Lipps, J. H. (eds.), Evolutionary Paleobiology. University of Chicago Press, Chicago.Google Scholar
Erwin, D. H. 1998. The end and the beginning: recoveries from mass extinctions. Trends in Ecology & Evolution, 13:344349.Google Scholar
Erwin, D. H. 2001. Lessons from the past: Biotic recoveries from mass extinctions. Proceedings of the National Academy of Sciences of the United States of America, 98:53995403.Google Scholar
Erwin, D. H. 2006a. Dates and rates: Temporal resolution in the deep time stratigraphic record. Annual Review of Earth and Planetary Sciences, 34:569590.Google Scholar
Erwin, D. H. 2006b. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton University Press, Princeton, 320 p.Google Scholar
Erwin, D. H., and Droser, M. L. 1993. Elvis taxa. Palaios, 8:623624.Google Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. 1987. A comparative-study of diversification events - the Early Paleozoic versus the Mesozoic. Evolution, 41:11771186.Google Scholar
Fara, E. 2001. What are Lazarus taxa? Geological Journal, 36:291303.Google Scholar
Fischer, A. G., and Arthur, M. A. 1977. Secular variations in the pelagic realm, p. 1950. In Cook, H. E. and Enos, P. (eds.), Deep-Water Carbonate Environments. Volume 25.Google Scholar
Foote, M. 1988. Survivorship analysis of Cambrian and Ordovician trilobites. Paleobiology, 14:258271.Google Scholar
Foote, M. 1994. Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology, 20:424444.Google Scholar
Foote, M. 1996. Ecological controls on the evolutionary recovery of post-Paleozoic crinoids. Science, 274:14921495.Google Scholar
Foote, M. 1997. Estimating taxonomic durations and preservation probability. Paleobiology, 23:278300.Google Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology, 25:1115.Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology, 26:74102.Google Scholar
Foote, M. 2001. Estimating completeness of the fossil record, p. 500504. In Briggs, D. E. G. and Crowther, P. R. (eds.), Palaeobiology II. Blackwell Publishing, London.Google Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: A new approach. Journal of Geology, 111:125148.Google Scholar
Foote, M. 2007. Extinction and quiescence in marine animal genera. Paleobiology, 33:261272.Google Scholar
Foote, M., and Raup, D. M. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology, 22:121140.Google Scholar
Gaston, K. J., and Spicer, J. I. 1998. Biodiversity: An Introduction. Blackwell Scientific, Oxford.Google Scholar
Georef, . Ovid.Google Scholar
Gilinsky, N. L. 1994. Volatility and the Phanerozoic decline of background extinction intensity. Paleobiology, 20:445458.Google Scholar
Gould, S. J. 1985. The paradox of the first tier - an agenda for paleobiology. Paleobiology, 11:212.Google Scholar
Gould, S. J. 1989. Wonderful Life. W. W. Norton, New York.Google Scholar
Gould, S. J. 2002. The Structure of Evolutionary Theory. Harvard University Press, Cambridge.Google Scholar
Gould, S. J., and Calloway, C. B. 1980. Clams and brachiopods- ships that pass in the night. Paleobiology, 6:383396.Google Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G. 2004. A Geologic Time Scale 2004. Cambridge University Press, Cambridge.Google Scholar
Graham, R. W., Lundelius, E. L. Jr., Graham, M. A., Schroeder, E. K., Toomey, R. S. Iii, Anderson, E., Barnosky, A. D., Burns, J. A., Churcher, C. S., Grayson, D. K., Guthrie, R. D., Harington, C. R., Jefferson, G. T., Martin, L. D., McDonald, H. G., Morlan, R. E., Semken, H. A. Jr., Webb, S. D., Werdelin, L., and Wilson, M. C. 1996. Spatial response of mammals to late Quaternary environmental fluctuations. Science, 272:16011606.Google Scholar
Gurevitch, J., and Hedges, L. V. 2001. Meta-analyses: combining the results of independent experiments, p. 347369. In Scheiner, S. M. and Gurevitch, J. (eds.), Analysis of Ecological Experiments. Oxford University Press, Oxford.Google Scholar
Hallam, A. 1991. Why was there a delayed radiation after the end-Palaeozoic extinctions? Historical Biology, 5:257262.Google Scholar
Hallam, A., and Wignall, P. B. 1997. Mass Extinctions and Their Aftermath. Oxford University Press, Oxford.Google Scholar
Hansen, T. A. 1988. Early Tertiary radiation of marine mollusks and the long term effects of the Cretaceous-Tertiary extinction. Paleobiology, 14:3751.Google Scholar
Hansen, T. A., Kelley, P. H., and Haasl, D. M. 2004. Paleoecological patterns in molluscan extinctions and recoveries; comparison of the Cretaceous-Paleogene and Eocene-Oligocene extinctions in North America. Palaeogeography Palaeoclimatology Palaeoecology, 214:233242.Google Scholar
Hansen, T. A., Kelley, P. H., Melland, V. D., and Graham, S. E. 1999. Effect of climate-related mass extinctions on escalation in molluscs. Geology, 27:11391142.Google Scholar
Harnik, P. G. 2007. Multiple factors in extinction risk: Testing models of extinction selectivity in Eocene bivalves using path analysis. Geological Society of America Abstracts with Programs, 39:369.Google Scholar
Harries, P. J. 2003. Approaches in High-Resolution Stratigraphic Paleontology. Kluwer, Boston, 474 p.Google Scholar
Harries, P. J., Kauffman, E. G., and Hansen, T. A. 1996. Models for biotic survival following mass extinction, p. 4160. In Hart, M. B. (ed.), Biotic Recovery from Mass Extinction Events. Volume 102. Geological Society of London, London.Google Scholar
Heard, S. B., and Mooers, A. Ø. 2002. Signatures of random and selective mass extinctions in phylogenetic tree balance. Systematic Biology, 51:889897.Google Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology, 21:92109.Google Scholar
Holland, S. M. 2003. Confidence limits on fossil ranges that account for facies changes. Paleobiology, 29:468479.Google Scholar
Hunt, G. 2007. Evolutionary divergence in directions of high phenotypic variance in the ostracode genus Poseidonamicus . Evolution, 61:15601576.Google Scholar
Hunt, G., Cronin, T. M., and Roy, K. 2005. Species-energy relationship in the deep sea: a test using the Quaternary fossil record. Ecology Letters, 8:739747.Google Scholar
Jablonski, D. 1980. Apparent versus real biotic effects of transgressions and regressions. Paleobiology, 6:397407.Google Scholar
Jablonski, D. 1986a. Background and mass extinction: the alteration of extinction regimes. Science, 231:129133.Google Scholar
Jablonski, D. 1986b. Background and mass extinctions - the alternation of macroevolutionary regimes. Science, 231:129133.Google Scholar
Jablonski, D. 1989. The biology of mass extinction: a paleontological view. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 325:357368.Google Scholar
Jablonski, D. 1995. Extinction in the fossil record, p. 2544. In May, R. M. and Lawton, J. H. (eds.), Extinction Rates. Oxford University Press, Oxford.Google Scholar
Jablonski, D. 1998. Geographic variation in the molluscan recovery from the end-Cretaceous extinction. Science, 279:13271330.Google Scholar
Jablonski, D. 2002. Survival without recovery after mass extinctions. Proceedings of the National Academy of Sciences of the United States of America, 99:81398144.Google Scholar
Jablonski, D. 2004. The evolutionary role of mass extinctions, p. 151177. In Taylor, P. D. (ed.), Extinctions in the History of Life. Cambridge University Press, Cambridge.Google Scholar
Jablonski, D. 2005. Mass extinctions and macroevolution. Paleobiology, 31:192210.Google Scholar
Jablonski, D. 2008a. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution, 62:715739.Google Scholar
Jablonski, D. 2008b. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences of the United States of America, in press.Google Scholar
Jablonski, D., Lidgard, S., and Taylor, P. D. 1997. Comparative ecology of bryozoan radiations: Origin of novelties in cyclostomes and cheilostomes. Palaios, 12:505523.Google Scholar
Jablonski, D., and Raup, D. M. 1995. Selectivity of End-Cretaceous marine bivalve extinctions. Science, 268:389391.Google Scholar
Jablonski, D., Roy, K., Valentine, J. W., Price, R. M., and Anderson, P. S. 2003. The impact of the Pull of the Recent on the history of marine diversity. Science, 300:11331135.Google Scholar
Jackson, J. B. C., and Erwin, D. H. 2006. What can we learn about ecology and evolution from the fossil record? Trends in Ecology & Evolution, 21:322328.Google Scholar
Jin, Y. G., Wang, Y., Wang, W., Shang, Q. H., Cao, C. Q., and Erwin, D. H. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289:432436.Google Scholar
Johnson, K. R., Budd, A. F., and Stemann, T. A. 1995. Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology, 21:5273.Google Scholar
Kelley, P. H., and Raymond, A. 1991. Migration, origination, and extinction of Southern Hemisphere brachiopods during the middle Carboniferous. Palaeogeography Palaeoclimatology Palaeoecology, 86:2339.Google Scholar
Kemple, W. G., Sadler, P. M., and Strauss, D. J. 1995. Extending graphic correlation to many dimensions: Stratigraphic correlation as constrained optimization, p. 6582. In Mann, K. O. and Lane, H. R. (eds.), Graphic Correlation. Volume 53.Google Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science, 294:10911094.Google Scholar
Kidwell, S. M., and Holland, S. M. 2002. The quality of the fossil record: Implications for evolutionary analyses. Annual Review of Ecology and Systematics, 33:561588.Google Scholar
Kiessling, W., and Aberhan, M. 2007. Environmental determinants of marine benthic biodiversity dynamics through Triassic-Jurassic time. Paleobiology, 33:414434.Google Scholar
Kitchell, J. A., Clark, D. L., and Gombos, A. M. Jr. 1986. Biological selectivity of extinction: A link between background and mass extinction. Palaios, 1:504511.Google Scholar
Knoll, A. H., Barnbach, R. K., Jonathan, L. P. C., Pruss, S., and Fischer, W. W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters, 256:295313.Google Scholar
Kolbe, S. E., Lockwood, R., and Hunt, G. 2006. Plio-Pleistocene extinction selectivity in veneroid bivalves: an analysis of morphological variability and survivorship. Geological Society of America Abstracts with Programs, 38:173.Google Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fursich, F. T., Scarponi, D., Wood, S. L. B., and Hoffmeister, A. P. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology, 32:533561.Google Scholar
Krug, A. Z., and Patzkowsky, M. E. 2004. Rapid recovery from the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 101:1760517610.Google Scholar
Krug, A. Z., and Patzkowsky, M. E. 2007. Geographic variation in turnover and recovery from the Late Ordovician mass extinction. Paleobiology, 33:435454.Google Scholar
Leakey, R. E., and Lewin, R. 1996. The Sixth Extinction: Patterns of Life and the Future of Humankind. Anchor Books, NY, 271 p.Google Scholar
Legendre, P., and Legendre, L. 1998. Numerical Ecology. Elsevier, Amsterdam, 20.Google Scholar
Lieberman, B. S., and Melott, A. L. 2007. Considering the case of biodiversity cycles: re-examining the evidence for periodicity in the fossil record. PLoS One, 2:e759.Google Scholar
Liow, L. H. 2006. Do deviants live longer? Morphology and longevity in trachyleberidid ostracodes. Paleobiology, 32:5569.Google Scholar
Lloyd, E. A., and Gould, S. J. 1993. Species selection on variability. Proceedings of the National Academy of Sciences of the United States of America, 90:595599.Google Scholar
Lockwood, R. 2003. Abundance not linked to survival across the end-Cretaceous mass extinction: Patterns in North American bivalves. Proceedings of the National Academy of Sciences of the United States of America, 100:24782482.Google Scholar
Lockwood, R. 2004. The K/T event and infaunality: morphological and ecological patterns of extinction and recovery in veneroid bivalves. Paleobiology, 30:507521.Google Scholar
Lockwood, R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology, 31:578590.Google Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology, 25:128.Google Scholar
Macleod, N. 1998. Impacts and marine invertebrate extinctions, p. 217246. In Grady, M. M., Hutchison, R., McCall, G. H. J., and Rothery, D. A. (eds.), Meteorites: Flux with Time and Impact Effects. Volume 140.Google Scholar
Marshall, C. R. 1995. Distinguishing between sudden and gradual extinctions in the fossil record - Predicting the position of the Cretaceous-Tertiary iridium anomaly using the ammonite fossil record on Seymour Island, Antarctica. Geology, 23:731734.Google Scholar
Marshall, C. R., and Ward, P. D. 1996. Sudden and gradual molluscan extinctions in the latest Cretaceous of western European Tethys. Science, 274:13601363.Google Scholar
McGhee, G. R., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography Palaeoclimatology Palaeoecology, 211:289297.Google Scholar
McGowan, A. J. 2004a. Ammonoid taxonomic and morphologic recovery patterns after the Permian-Triassic. Geology, 32:665668.Google Scholar
McGowan, A. J. 2004b. The effect of the Permo-Triassic bottleneck on Triassic ammonoid morphological evolution. Paleobiology, 30:369395.Google Scholar
McGowan, A. J., and Smith, A. B. 2007. Ammonoids across the Permian/Triassic boundary: A cladistic perspective. Palaeontology, 50:573590.Google Scholar
McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics, 28:495516.Google Scholar
McKinney, M. L. 2001. Selectivity during extinctions, p. 198202. In Briggs, D. E. G. and Crowther, P. R. (eds.), Palaeobiology II. Blackwell Publishing, London.Google Scholar
Miller, A. I. 1997. Dissecting global diversity patterns: Examples from the Ordovician Radiation. Annual Review of Ecology and Systematics, 28:85104.Google Scholar
Miller, A. I. 1998. Biotic transitions - Biotic transitions in global marine diversity. Science, 281:11571160.Google Scholar
Miller, A. I., and Mao, S. G. 1995. Association of orogenic activity with the Ordovician radiation of marine life. Geology, 23:305308.Google Scholar
Miller, A. I., and Sepkoski, J. J. 1988. Modeling bivalve diversification - the effect of interaction on a macroevolutionary system. Paleobiology, 14:364369.Google Scholar
Mooney, H., and Hobbs, R. J. 2000. Invasive Species in a Changing World. Island Press.Google Scholar
Myers, N., and Knoll, A. H. 2001. The biotic crisis and the future of evolution. Proceedings of the National Academy of Sciences of the United States of America, 98:53895392.Google Scholar
Newell, N. D. 1952. Periodicity in invertebrate evolution. Journal of Paleontology, 26:371385.Google Scholar
Newell, N. D. 1963. Crises in the history of life. Scientific American, 208:7792.Google Scholar
Newell, N. D. 1967. Revolutions in the history of life, p. 6391. In Albritton, C. C. (ed.), Uniformity and Simplicity. Volume 89.Google Scholar
NRC. 2005. The Geological Record of Ecological Dynamics: Understanding the Biotic Effects of Future Environmental Change. National Academy Press, Washington, DC, 200 p.Google Scholar
Nützel, A. 2005. Recovery of gastropods in the Early Triassic. Comptes Rendus Palevol, 4:501515.Google Scholar
Osenberg, C. W., Sarnelle, O., and Goldberg, D. E. 1999. Meta-analysis in ecology: Concepts, statistics, and applications. Ecology, 80:11031104.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 1996. Extinction, invasion, and sequence stratigraphy: patterns of faunal change in the Middle and Upper Ordovician of the eastern United States, p. 131142. In Witzke, B. J., Ludvigson, G. A., and Day, J. (eds.), Paleozoic Sequence Stratigraphy: Views from the North American Craton. Volume 306.Google Scholar
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 104:1050610511.Google Scholar
Peters, S. E., and Ausich, W. I. 2008. A sampling-adjusted macroevolutionary history for Ordovician-early Silurian crinoids. Paleobiology, 34:104116.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology, 27:583601.Google Scholar
Peters, S. E., and Foote, M. 2002. Determinants of extinction in the fossil record. Nature, 416:420424.Google Scholar
Rampino, M. R., Prokoph, A., and Adler, A. 2000. Tempo of the end-Permian event: High-resolution cyclostratigraphy at the Permian-Triassic boundary. Geology, 28:643646.Google Scholar
Raup, D. 1972. Taxonomic diversity during the Phanerozoic. Science, 177:10651071.Google Scholar
Raup, D. M. 1991. A kill curve for Phanerozoic marine species. Paleobiology, 17:3748.Google Scholar
Raup, D. M., and Sepkoski, J. J. 1982. Mass extinctions in the marine fossil record. Science, 215:15011502.Google Scholar
Raup, D. M., and Sepkoski, J. J. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 81:801805.Google Scholar
Raup, D. M., and Sepkoski, J. J. 1986. Periodic extinction of families and genera. Science, 231:833836.Google Scholar
Raymond, A., Kelley, P. H., and Lutken, C. B. 1990. Dead by degrees: articulate brachiopods, paleoclimate, and the mid-Carboniferous extinction event. Palaios, 5:111123.Google Scholar
Rickards, R. B., and Wright, A. J. 2002. Lazarus taxa, refugia and relict faunas: evidence from graptolites. Journal of the Geological Society, 159:14.Google Scholar
Robeck, H. E., Maley, C. C., and Donoghue, M. J. 2000. Taxonomy and temporal diversity patterns. Paleobiology, 26:171187.Google Scholar
Rode, A. L., and Lieberman, B. S. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeography Palaeoclimatology Palaeoecology, 211:345359.Google Scholar
Rode, A. L., and Lieberman, B. S. 2005. Integrating evolution and biogeography: a case study involving Devonian crustaceans. Journal of Paleontology, 79:267276.Google Scholar
Rohde, R. A., and Muller, R. A. 2005. Cycles in fossil diversity. Nature, 434:208210.Google Scholar
Rudwick, M. J. S. 1998. Georges Cuvier, Fossil Bones, and Geological Catastrophes: New Translations and Interpretations of the Primary Texts. University of Chicago Press, Chicago, 318 p.Google Scholar
Saunders, W. B., Greenfest-Allen, E., Work, D. M., and Nikolaeva, S. V. 2008. Morphologic and taxonomic history of Paleozoic ammonoids in time and morphospace. Paleobiology, 34:128154.Google Scholar
Schubert, J. K., and Bottjer, D. J. 1995. Aftermath of the Permian-Triassic mass extinction event - Paleoecology of Lower Triassic carbonates in the Western USA. Palaeogeography Palaeoclimatology Palaeoecology, 116:139.Google Scholar
Sepkoski, J. J. 1984. A Kinetic-model of Phanerozoic taxonomic diversity 3. Post-Paleozoic families and mass extinctions. Paleobiology, 10:246267.Google Scholar
Sepkoski, J. J. 1996. Patterns of Phanerozoic extinction: a perspective from global databases, p. 3551. In Walliser, O. (ed.), Global Events and Event Stratigraphy in the Phanerozoic. Springer, Berlin.Google Scholar
Sepkoski, J. J. Jr. 1982. A compendium of fossil marine families. Milwaukee Public Museum Contributions in Biology and Geology, 51:1125.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363:1560.Google Scholar
Sepkoski, J. J., and Kendrick, D. C. 1993. Numerical experiments with model monophyletic and paraphyletic taxa. Paleobiology, 19:168184.Google Scholar
Sheehan, P. M. 2001. The Late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences, 29:331364.Google Scholar
Sheehan, P. M., Coorough, P. J., and Fastovsky, D. E. 1996. Biotic selectivity during the K/T and Late Ordovician extinction events, p. 477489. In Ryder, G., Fastovsky, D., and Gartner, S. (eds.), The Cretaceous-Tertiary Event and Other Catastrophes in Earth History. Volume 307.Google Scholar
Shen, S. Z., and Shi, G. R. 2002. Paleobiogeographical extinction patterns of Permian brachiopods in the Asian-western Pacific region. Paleobiology, 28:449463.Google Scholar
Shipley, B. 2000. Cause and Correlation in Biology. Cambridge University Press, Cambridge.Google Scholar
Signor, P. W., and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record, p. 291296. In Silver, L. T. and Schultz, P. H. (eds.), Geological Implications of Large Asteroids and Comets on the Earth. Volume 190.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 356:351367.Google Scholar
Smith, A. B., and Jeffery, C. H. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature, 392:6971.Google Scholar
Smith, A. B., and Patterson, C. 1988. The influence of taxonomic method on the perception of patterns of evolution. Evolutionary Biology, 23:127216.Google Scholar
Smith, J. T., and Roy, K. 2006. Selectivity during background extinction: Plio-Pleistocene scallops in California. Paleobiology, 32:408416.Google Scholar
Stanley, S. M. 1977. Trends, rates, and patterns of evolution in the Bivalvia, p. 209250. In Hallam, A. (ed.), Patterns of Evolution, as Illustrated by the Fossil Record. Elsevier, Amsterdam.Google Scholar
Stanley, S. M. 1990. Delayed recovery and the spacing of major extinctions. Paleobiology, 16:401414.Google Scholar
Stanley, S. M. 2007. An analysis of the history of marine animal diversity. Paleobiology, 33:155.Google Scholar
Stigall, A. L., and Lieberman, B. S. 2006. Quantitative palaeobiogeography: GIS, phylogenetic biogeographical analysis, and conservation insights. Journal of Biogeography, 33:20512060.Google Scholar
Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H., and Wignall, P. B. 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology, 29:351354.Google Scholar
Uhen, M. 1996. An evaluation of clade-shape statistics using simulations and extinct families of mammals. Paleobiology, 22:822.Google Scholar
Valentine, J. 1990. The macroevolution of clade shape, p. 128150. In Ross, R. M. and Allmon, W. D. (eds.), Causes of Evolution: a Paleontological Perspective. University of Chicago Press, Chicago.Google Scholar
Van Valen, L. M. 1984. A resetting of Phanerozoic community evolution. Nature, 307:5052.Google Scholar
Vermeij, G. J. 1987. Evolution and Escalation: an Ecological History of Life. Princeton University Press, Princeton, 527 p.Google Scholar
Vermeij, G. J. 2004. Ecological avalanches and the two kinds of extinction. Evolutionary Ecology Research, 6:315337.Google Scholar
Wagner, P. J. 1995a. Diversity patterns among early gastropods: Contrasting taxonomic and phylogenetic descriptions. Paleobiology, 21:410439.Google Scholar
Wagner, P. J. 1995b. Stratigraphic tests of cladistic hypotheses. Paleobiology, 21:153178.Google Scholar
Wagner, P. J. 1997. Patterns of morphologic diversification among the Rostroconchia. Paleobiology, 23:115150.Google Scholar
Wagner, P. J., Aberhan, M., Hendy, A., and Kiessling, W. 2007. The effects of taxonomic standardization on sampling-standardized estimates of historical diversity. Proceedings of the Royal Society B-Biological Sciences, 274:439444.Google Scholar
Walliser, O. 1996. Global Events and Event Stratigraphy in the Phanerozoic. Springer-Verlag, Berlin, 333 p.Google Scholar
Wang, S. C. 2003. On the continuity of background and mass extinction. Paleobiology, 29.Google Scholar
Wang, S. C., and Marshall, C. R. 2004. Improved confidence intervals for estimating the position of a mass extinction boundary. Paleobiology, 30:518.Google Scholar
Webster, M. 2007. A Cambrian peak in morphological variation within trilobite species. Science, 317:499502.Google Scholar
Wignall, P. B., and Benton, M. J. 1999. Lazarus taxa and fossil abundance at times of biotic crisis. Journal of the Geological Society, 156:453456.Google Scholar
Wignall, P. B., and Newton, R. 2003. Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia; evidence for a diachronous mass extinction. Palaios, 18:153167.Google Scholar
Wilson, E. O. 2002. The Future of Life. Knopf, New York, 256 p.Google Scholar
Wright, P., Cherns, L., and Hodges, P. 2003. Missing mollusks: field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology, 31:211214.Google Scholar