Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-04T18:20:26.515Z Has data issue: false hasContentIssue false

Ultra thin gate oxide characterization

Published online by Cambridge University Press:  15 July 2004

D. Roy*
Affiliation:
STMicroelectronics, Central R&D labs, 850 rue Jean Monnet, BP 16, 38926 Crolles, France
S. Bruyere
Affiliation:
STMicroelectronics, Central R&D labs, 850 rue Jean Monnet, BP 16, 38926 Crolles, France
D. Rideau
Affiliation:
STMicroelectronics, Central R&D labs, 850 rue Jean Monnet, BP 16, 38926 Crolles, France
F. Gilibert
Affiliation:
STMicroelectronics, Central R&D labs, 850 rue Jean Monnet, BP 16, 38926 Crolles, France L2MP, IMT Technopole de Château-Gombet, 13451 Marseille, France
L. Giguerre
Affiliation:
Philips semiconductors, Central R&D labs, 850 rue Jean Monnet, BP 16, 38926 Crolles, France
F. Monsieur
Affiliation:
STMicroelectronics, Central R&D labs, 850 rue Jean Monnet, BP 16, 38926 Crolles, France
G. Gouget
Affiliation:
STMicroelectronics, Central R&D labs, 850 rue Jean Monnet, BP 16, 38926 Crolles, France
P. Scheer
Affiliation:
STMicroelectronics, Central R&D labs, 850 rue Jean Monnet, BP 16, 38926 Crolles, France
Get access

Abstract

The increase of the gate leakage current of advanced CMOS technologies makes standard electrical characterization methods as C(V) measurement or charge pumping more complex and uncertain. In this paper, and based on C(V) characteristics, main elements that directly affect the electrical measurements of ultra thin MOS devices are clarified. Then, classical parameter extraction techniques are reviewed, pointing out their absolute limitations or giving potential keys of improvement.

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ancona, M. G. et al., Phys. Rev. B 39, 13 (1989) CrossRef
K. Yang, C. Hu, IEEE Trans. Electron Devices 46 (1999)
D. W. Barlage et al., IEEE Electron Device Lett. 9 (2000)
K. Ahmed, et al., IEEE Trans. Electron Devices 46 (1999)
F. Giliber et al., ULISS, 2003
N. Planes et al., IEEE International Conference on Microelectronic Test Structures (2003)
D. Rideau et al., IEEE International Conference on Microelectronic Test Structures (2003)
W. K Shih et al., IEDM, 2001
K. Romanejek, F. Lime, G. Ghibaudo, C. Leroux, 12th Workshop on Dielectrics in Microelectronics (2002)
J. Schmitz et al., IEEE International Conference on Microelectronic Test Structures (2003)
Y. Okawa et al., IEEE International Conference on Microelectronic Test Structures (2003)
Quasi-static C-V Measurements, Agilent 4155C/4156C User's Guide, Parametric Test Assistant CD-ROM, rev. 3.1 (2000)
E. H Nicollian, A. Goetzberger, The Si-SiO2 interface electrical properties as determined by the metal-insulator-silicon conductance technique, Bell Syst. Tech. J. 46 (1967)
S. Kar, W. E. Dankle, Solid State Electron. 16 (1972)
E. N Vogel et al., IEEE Electron Device Lett. 47 (2000)
Groesenenken, G. et al., IEEE Trans. Electron Devices 31, 42 (1984) CrossRef
Ghetti, A. et al., IEEE Trans. Electron Devices 47, 2358 (2000) CrossRef
Masson, P., Autrant, J. L, Brini, J., IEEE Electron Device Lett. 20, 92 (1999) CrossRef
Bauza, D., IEEE Electron Device Lett. 23, 658 (2002) CrossRef
D. Bauza, 12th Workshop on Dielectrics in Microelectronics (2002)
G. Barbontin, A. Vapaille, Instabilities in Silicon devices (1989), Vols. 1 and 2