Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T08:56:51.107Z Has data issue: false hasContentIssue false

Strain effects of InP/Si and InP/porous Si studiedby spectroscopic ellipsometry

Published online by Cambridge University Press:  28 March 2008

M. Lajnef*
Affiliation:
Laboratoire de Photovoltaïque et de Semiconducteurs, Centre de Recherche des Sciences et Technologies de l'Énergie, BP 95, Hammam-Lif 2050, Tunisia
N. Ben Sedrine
Affiliation:
Laboratoire de Photovoltaïque et de Semiconducteurs, Centre de Recherche des Sciences et Technologies de l'Énergie, BP 95, Hammam-Lif 2050, Tunisia
J. C. Harmand
Affiliation:
Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France
L. Travers
Affiliation:
Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France
H. Ezzaouia
Affiliation:
Laboratoire de Photovoltaïque et de Semiconducteurs, Centre de Recherche des Sciences et Technologies de l'Énergie, BP 95, Hammam-Lif 2050, Tunisia
R. Chtourou
Affiliation:
Laboratoire de Photovoltaïque et de Semiconducteurs, Centre de Recherche des Sciences et Technologies de l'Énergie, BP 95, Hammam-Lif 2050, Tunisia
Get access

Abstract

In this work, we study the optical interband transitions of InP on silicon (InP/Si) and on porous silicon (InP/PSi) substrates grown by molecular beam epitaxy (MBE). Spectroscopic ellipsometry for photon energies from 2 to 5 eV is used to determine the InP/Si and InP/PSi complex refractive index and thickness. Bruggeman effective medium approximation (EMA) associated to the Cauchy model are used to model the experimental ellipsometric data. We have found that the E 1 and E 1 + $\Delta _{1}$ transition energies of InP/Si and InP/PSi shift to low energies compared to bulk InP. This effect is interpreted as a result of the strain relaxation of the InP layers grown respectively on Si and porous Si substrates.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kochiya, T., Oyama, Y. , Sugai, M., Nishizawa, M., Thin Solid Films 515, 4838 (2007) CrossRef
Naritsuka, S., Nishinaga, T., J. Cryst. Growth 174, 622 (1997) CrossRef
Coquille, R., Toudic, Y., Gauneau, M., Grandpierre, G., Paris, IC., J. Cryst. Growth 64, 23 (1983) CrossRef
Sugo, M., Yamaguch, M., J. Cryst. Growth 99, 365 (1990) CrossRef
Seki, A., Konushi, F., Kudo, J., Koba, M., J. Cryst. Growth 93, 527 (1988) CrossRef
Herzinger, C.M., Synder, P.G., Johs, B., Woollam, J.A., J. Appl. Phys. 77, 1715 (1995) CrossRef
Fedosenko, G., Korzec, D., Engemann, J., Lyebyedyev, D., Scheer, H.C., Thin Solid Films 406, 275 (2002) CrossRef
Vineis, J., Phys. Rev. B 71, 245205 (2005) CrossRef
Handbook of condensed matter, Martienssen Warlinont (Springer, 2005)
Erman, M., Andre, J.P., LeBris, J., J. Appl. Phys. 59, 2019 (1986) CrossRef
Lee, H., Biswas, D., Klein, M.V., Morkoç, H., Aspnes, D.E., Choe, B.D., Kim, J., Griffiths, C.O., J. Appl. Phys. 75, 5040 (1994) CrossRef
Kim, H., Kim, J.S., Kim, H.M., Choo, H.R., Kim, H.M., Pyun, K.E., J. Appl. Phys. 81, 409 (1996) CrossRef
Jain, S.C., Willander, M., Maes, H., Semicond. Sci. Technol. 11, 641 (1996) CrossRef
Rönnow, D., Christensen, N.E., Cardona, M., Phys. Rev. B 59, 5575 (1999) CrossRef
Yu, Z.G., Pryor, C.E., Lau, W.H., Berding, M.A., MacQueen, D.B., J. Phys. Chem. B 109, 22913 (2005) CrossRef
Kim, K., Lee, M., Kangb, T.W., Hanb, M.S., Solid State Commun. 106, 597 (1998) CrossRef