Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-10-06T20:13:42.071Z Has data issue: false hasContentIssue false

Atomic scale study of InP etching by Cl2-Ar ICP plasma discharge

Published online by Cambridge University Press:  22 February 2011

A. Rhallabi*
Affiliation:
Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, IMN, Laboratoire des Plasmas et des Couches Minces, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
R. Chanson
Affiliation:
Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, IMN, Laboratoire des Plasmas et des Couches Minces, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
J.-P. Landesman
Affiliation:
Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, IMN, Laboratoire des Plasmas et des Couches Minces, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
C. Cardinaud
Affiliation:
Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, IMN, Laboratoire des Plasmas et des Couches Minces, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
M.-C. Fernandez
Affiliation:
Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, IMN, Laboratoire des Plasmas et des Couches Minces, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
Get access

Abstract

A gas phase kinetic model combined to a 3D atomic etching model have been developed to study the etching process of InP under Cl2-Ar ICP plasma discharge. A gas phase global kinetic model is used to calculate the reactive particle fluxes implied in the etching mechanisms. The 3D atomic InP etching model is based on the Monte Carlo kinetic approach where the plasma surface interactions are described in the probability way. The coupling between the plasma chemistry model and the surface etching model is an interesting approach to predict the etched surface properties in terms of the etch rate, the surface roughness and surface steochiometry as a function of the operating conditions. A satisfactory agreement is obtained by comparing the experimental and the simulation results concerning the evolution of the main plasma discharge parameters such as the electron density and temperature versus the ICP source power for a surface recombination coefficient of atomic chlorine fixed at γCl = 0.04. On the other hand, simulation results show the effect of the operating conditions on the etched surface roughness and the etch rate evolutions with time in the early stage. Moreover, the simulation results show the correlation between the decrease of the ion to chlorine flux ratio and the decrease of the RRMS as a function of the pressure.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Strasser, P., Wüest, R., Robin, F., Forchel, A., J. Vac. Sci. Technol. B 25, 387 (2007) CrossRef
Samukawa, S., Microelectron. Eng. 53, 69 (2000) CrossRef
Inoue, S., Kajikawa, K., Mater. Sci. Eng. B 103, 170 (2003) CrossRef
Carlström, C.F., van der Heijden, R., Karouta, F., van der Heijden, R.W., Salemink, H.W.M., Van der Drifft, E., J. Vac. Sci. Technol. B 24, 6 (2006) CrossRef
Xing, A., Davanco, M., Blumenthal, D.J., Hu, E.L., J. Vac. Sci. Technol. B 22, 70 (2004) CrossRef
Mahorowala, A.P., Sawin, H.H., J. Vac. Sci. Technol. B 20, 1077 (2002) CrossRef
Blauw, A., Van Der Drift, E., Marcos, G., Rhallabi, A., J. Appl. Phys. 94, 6311 (2003) CrossRef
Marcos, G., Rhallabi, A., Ranson, P., J. Vac. Sci. Technol. B 22, 1912 (2004) CrossRef
Vyvoda, M.A., Li, M., Graves, D.B., J. Vac. Sci. Technol. B 18, 820 (2000) CrossRef
Pommereau, F., Legouezigou, L., Hubert, S., Sainson, J.P. Chandouineau, S. Fabre, G.H. Duan, B. Lombardet, R. Ferrini, R. Houdre, J. Appl. Phys. 95, 2242 (2004) CrossRef
Fujita, M., Sugitatsu, A., Uesugi, T., Noda, S., Jpn J. Appl. Phys. Part 2 43, 11A (2004)
Milenin, A.P., Jamois, C., Geppert, T., Gosele, U., Wehrspohn, R.B., Microelectron. Eng. 81, 15 (2005) CrossRef
Lee, J.W., Lambers, E.S., Abernathy, C.R., Pearton, S.J., Shul, R.J., Ren, F., Hobson, W.S., Constantine, C., Mater. Sci. Semicond. Process. 1, 65 (1998) CrossRef
Lu, J., Meng, X., Thorpe, A.J.S., Shepherd, F.R., Poirier, M., J. Vac. Sci. Technol. A 22, 1058 (2004) CrossRef
Liu, B., Landesman, J.P., Leclercq, J.L., Rhallabi, A., Guilet, S., Cardinaud, C., Pommereau, F., Avella, M., González, M.A., Jiménez, J., Mater. Sci. Semicond. Process. 9, 225 (2006) CrossRef
Nishikawa, K., Oomori, T., Ono, K., J. Vac. Sci. Technol. B 17, 127 (1999) CrossRef
Neuilly, F., Booth, J.P., Vallier, L., J. Vac. Sci. Technol. A 20, 225 (2002) CrossRef
Malyshev, M.V., Donnelly, V.M., Samukawa, S., J. Appl. Phys. 84, 1222 (1998) CrossRef
Malyshev, M.V., Donnelly, V.M., J. Appl. Phys. 87, 1642 (2000) CrossRef
Malyshev, M.V., Donnelly, V.M., J. Appl. Phys. 84, 137 (1998) CrossRef
Malyshev, M.V., Fuller, N.C.M., Bogart, K.H.A., Donnelly, V.M., Herman, I.P., J. Appl. Phys. 88, 2246 (2000) CrossRef
Yonemura, S., Nanbu, K., Sakai, K., Jpn J. Appl. Phys. 41, 6189 (2002) CrossRef
Nanbu, K., Morimoto, T., Suetani, M., IEEE Trans. Plasma Sci. 27, 1379 (1999) CrossRef
Efremov, A.M., Kim, G.H., Kim, J.G., Bogomolov, A.V., Kim, C.I., Microelectron. Eng. 84, 136 (2007) CrossRef
Sommerer, T.J., Kushner, M.J., J. Vac. Sci. Technol. B 10, 2179 (1992) CrossRef
Rhallabi, A., Catherine, Y., IEEE Trans. Plasma Sci. 19, 270 (1991) CrossRef
Lee, C., Lieberman, M.A., J. Vac. Sci. Technol. A 13, 368 (1995) CrossRef
Lee, C., Graves, D.B., Lieberman, M.A., Hess, D.W., J. Electrochem. Soc. 141, 1547 (1994)
Barone, M.E., Graves, D.B., J. Appl. Phys. 78, 6604 (1995) CrossRef
Yamada, H., Hamaguchi, S., J. Appl. Phys. 96, 6147 (2004) CrossRef
Houlet, L., Rhallabi, A., Turban, G., J. Vac. Sci. Technol. A 17, 2598 (1999) CrossRef
Chantry, P.J., J. Appl. Phys. 62, 1141 (1987) CrossRef
Kurepa, M.V., Belie, D.S., J. Phys. B 11, 3719 (1978) CrossRef
Lennon, M.A., Bell, K.L., Gilbody, H.B., Hughers, J.G., Kingston, A.E., Murray, M.J., Smith, F.J., J. Phys. Chem. Ref. Data 17, 1285 (1988) CrossRef
P.C. Cosby, H. Helm, SRI Report, PYU 1147/MP 92-280, 1992
Rogoff, G.L., Kramer, J.M., Piejak, R.B., IEEE Trans. Plasma Sci. 14, 103 (1986) CrossRef
Gottscho, R.A., Scheller, G.R., Intrator, T., D.B. graves, J. Vac. Sci. Technol. A 6, 1393 (1988) CrossRef
Scheller, G.R., Gottscho, R.A., Intrator, T., Graves, D.B., J. Appl. Phys. 64, 4384 (1988) CrossRef
Scheller, G.R., Gottscho, R.A., Graves, D.B., Intrator, T., J. Appl. Phys. 64, 598 (1988) CrossRef
Rapp, D., Englander-Golden, P., J. Chem. Phys. 43, 1464 (1965) CrossRef
Peterson, L.R., Allen Jr, J.E.., J. Chem. Phys. 56, 6068 (1972) CrossRef
Margreiter, D., Deutsch, H., Mark, T.D., Contrib. Plasma Phys. 30, 487 (1990) CrossRef
Ganas, P.S., J. Appl. Phys. 63, 277 (1988) CrossRef
Bassett, N.L., Economou, D.J., J. Appl. Phys. 75, 1931 (1994) CrossRef
Gundel, L.A., Setser, D.W., Clyne, M.A.A., Coxon, J.A., Nip, W., J. Chem. Phys. 64, 4390 (1976) CrossRef
Curley, G.A., Gatilova, L., Guilet, S., Bouchoule, S., Gogna, G.S., Sirse, N., Karkari, S., Booth, J.-P., J. Vac. Sci. Technol. A 28, 360 (2010) CrossRef
R. Chanson, N. Vaissière, A. Rhallabi, C. Cardinaud, M.-C. Peignon, S. Bouchoule, in 63rd Annual Gaseous Electronics Conf. and 7th Int. Conf. on Reactive Plasmas, GEC-IRCP, Paris, France, 2010, paper CTP.00021
Czerwiec, T., Greer, F., Graves, D.B., J. Phys. D: Appl. Phys. 38, 4278 (2005) CrossRef
Fuller, N.C.M., Herman, I.P., J. Appl. Phys. 90, 3182 (2001) CrossRef
Jenichen, A., Engler, C., Surf. Sci. 561, 171 (2004) CrossRef
J.F. Ziegler, TRIM (the Transport of Ions in Matter) (IBM-Research 28-0, Yorktown Heights, NY, 1992)
Marcos, G., Rhallabi, A., Ranson, P., Appl. Surf. Sci. 254, 3576 (2008) CrossRef
Bouchoule, S., Patriarche, G., Guilet, S., Gatilova, L., Largeau, L., Chabert, P., J. Vac. Sci. Technol. B 26, 666 (2008) CrossRef