Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T05:09:05.120Z Has data issue: false hasContentIssue false

Suppression of leakage currents in GaN-based LEDs inducedby reactive-ion etching damages

Published online by Cambridge University Press:  19 June 2008

M. Mosca*
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Quantum Electronics and Photonics, 1015 Lausanne, Switzerland
A. Castiglia
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Quantum Electronics and Photonics, 1015 Lausanne, Switzerland
H.-J. Bühlmann
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Quantum Electronics and Photonics, 1015 Lausanne, Switzerland
J. Dorsaz
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Quantum Electronics and Photonics, 1015 Lausanne, Switzerland
E. Feltin
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Quantum Electronics and Photonics, 1015 Lausanne, Switzerland
J.-F. Carlin
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Quantum Electronics and Photonics, 1015 Lausanne, Switzerland
N. Grandjean
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Quantum Electronics and Photonics, 1015 Lausanne, Switzerland
Get access

Abstract

Forward and reverse leakage currents in GaN/InGaN multi-quantum well light-emitting diodes (LEDs) are caused by reactive-ion etching (RIE) damages during device patterning. A method to recover the damaged surfaces, based on a chemical etch in KOH:ethylene-glycol is described. Leakage currents decrease of more than a factor of 10 and are completely suppressed in most of devices.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pearton, S.J., Appl. Surf. Sci. 117-118, 597 (1997) CrossRef
Khan, F.A., Kumar, V., Adesida, I., Electrochem. Solid-State Lett. 5, G8 (2002) CrossRef
Shul, R.J., Zhang, L., Baca, A.G., Wilson, C.G., Han, J., Pearton, S.J., Ren, F., J. Vac. Sci. Technol. A 18, 1139 (2000) CrossRef
Adivarahan, V., Simin, G., Yang, J.W., Luney, A., Asif Khan, M., Pala, N., Shur, M., Gaska, R., Appl. Phys. Lett. 77, 863 (2000) CrossRef
Choi, H.W., Chua, S.J., Raman, A., Pan, J.S., Wee, A.T.S., Appl. Phys. Lett. 77, 1795 (2000) CrossRef
Kent, D.G., Lee, K.P., Zhang, A.P., Luo, B., Overberg, M.E., Abernathy, C.R., Ren, F., Mackenzie, K.D., Pearton, S.J., Nakagawa, Y., Solid-State Electron. 45, 1837 (2001) CrossRef
Hahn, Y.B., Choi, R.J., Hong, J.H., Park, H.J., Choi, C.S., Lee, H.J., J. Appl. Phys. 92, 1189 (2002) CrossRef
Lee, J.M., Huh, C., Kim, D.J., Park, S.J., Semicond. Sci. Technol. 18, 530 (2003) CrossRef
Cao, X.A., Zhang, A.P., Dang, G.T., Ren, F., Pearton, S.J., Shul, R.J., Zhang, L., J. Vac. Sci. Technol. A 18, 1144 (2000) CrossRef
Hu, X., Koudymov, A., Simin, G., Yang, J., Asif, M.. Khan, A. Tarakji, M.S. Shur, R. Gaska, Appl. Phys. Lett. 79, 2832 (2001) CrossRef
Kim, H.M., Huh, C., Kim, S.W., Park, N.M., Park, S.J., Electrochem. Solid-State Lett. 7, G241 (2004) CrossRef
Huh, C., Kim, S.W., Kim, H.S., Lee, I.H., Park, S.J., J. Appl. Phys. 87, 4591 (2000) CrossRef
Rong, B., van der Drift, E., Reeves, R.J., Sloof, W.G., Cheung, R., J. Vac. Sci. Technol. B 19, 2917 (2001) CrossRef
Hsu, J.W.P., Manfra, M.J., Lang, D.V., Richter, S., Chu, S.N.G., Sergent, A.M., Kleiman, R.N., Pfeiffer, L.N., Molnar, R.J., Appl. Phys. Lett. 78, 1685 (2001) CrossRef
Lee, S.W., Oh, D.C., Goto, H., He, J.S., Lee, H.J., Hanada, T., Cho, M.W., Yao, T., Hong, S.K., Lee, H.Y., Cho, S.R., Choi, J.W., Jang, J.H., Shin, J.E., Lee, J.S., Appl. Phys. Lett. 89, 132117 (2006) CrossRef