Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T03:33:03.363Z Has data issue: false hasContentIssue false

Computation of 3D curvatures on a wet snow sample

Published online by Cambridge University Press:  15 July 1999

J. B. Brzoska*
Affiliation:
Météo-France, CNRM/Centre d'Études de la Neige, 1441 rue de la Piscine, 38406 St Martin d'Hères, France
B. Lesaffre*
Affiliation:
Météo-France, CNRM/Centre d'Études de la Neige, 1441 rue de la Piscine, 38406 St Martin d'Hères, France
C. Coléou*
Affiliation:
Météo-France, CNRM/Centre d'Études de la Neige, 1441 rue de la Piscine, 38406 St Martin d'Hères, France
K. Xu
Affiliation:
Laboratoire de Physique des phénomènes de Transport et de Mélange (Centre d'Études de la Neige), Bd3, Téléport2, B.P. 79, 86960 Futuroscope, France
R. A. Pieritz*
Affiliation:
Laboratoire d'Études des Transferts en Hydrologie et Environnement, B.P. 53, 38041 Grenoble Cedex 9, France
Get access

Abstract

The map of 3D curvatures of a porous medium characterizes most of its capillary properties. A model for directly computing curvatures from athree-dimensional image of the solid matrix of a porous medium is presented. Aprecise distance map of the object is built using the “chamfer” distance of discretegeometry. The set of local maxima of the distance map is used for quick location ofthe normal to each point P of the object's surface. The normal being known,principal radii of curvature are computed in 2D and lead to 3D curvature. This modelwas validated on geometric shapes of known curvature, then applied on a natural snowsample. The snow image was obtained from a serial cut (performed in cold laboratory)observed under specularly reflected light. Views of both fresh and sublimated sectionswere taken for each of the 64 section planes: this allowed easier distinction betweensnow and filling medium and made possible automatic contouring of section planeimages. Curvature maps computed from pore and grain phases respectively were found tobe in excellent agreement for each tested object shape, including the snow sample.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

F.A.L. Dullien, Porous media; fluid transport and pore structure (Academic Press, 1979).
S.C. Colbeck, A review of sintering in seasonal snow, CRREL Report 97-10, 1998.
A.W. Adamson, Physical chemistry of surfaces, 5th edn. (Wiley, New York, 1990).
J.M. Chassery, A. Montanvert, Géométrie discrète en analyse d'images (Hermès, Paris, 1992).
J. Serra, Image analysis and mathematical morphology (Academic Press, 1982), Vol. 1.
Borgefors, G., Comp. Vis. Graph. Image Proc. 27, 321 (1984). CrossRef
F. Rolland, Ph.D. thesis, University Joseph Fourier, Grenoble, 1991.
Lesaffre, B., Pougatch, E., Martin, E., Ann. Glaciol. 26, 112 (1998). CrossRef
Brzoska, J.B., Coléou, C., Lesaffre, B., J. Glaciol. 44, 54 (1998). CrossRef
H.S. Boyne, D.J. Fisk, A laboratory comparison of field techniques for measurement of the liquid water fraction of snow, Special CRREL Report 90-3, 1990.
Brun, E., Pahaut, E., J. Glaciol. 37, 420 (1991). CrossRef
W. Good, Thin sections, serial cuts and 3D analysis of snow, Publ. No. 192 IAHS, Proc. Symp. Avalanche formation, movement and effects, Davos, pp. 35-48.
P. Callaghan, Principles of Magnetic Resonance Microscopy (Oxford, University Press, 1991).
Cloetens, P., Pateyron-Salomé, M., Buffière, J.Y., Peix, G., Baruchel, J., Peyrin, F., Schlenker, M., J. Appl. Phys. 81, 5878 (1997). CrossRef
J.B. Brzoska, C. Coléou, B. Lesaffre, S. Borel, O. Brissaud, W. Ludwig, E. Boller, J. Baruchel, ESRF Newsletters (in press).
Brun, E., David, P., Sudul, M., Brunot, G., J. Glaciol. 38, 13 (1992). CrossRef