Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T20:34:59.923Z Has data issue: false hasContentIssue false

2D and 3D homogenization of laminated cores in the frequency domain*

Published online by Cambridge University Press:  08 November 2013

Wagane Faye*
Affiliation:
Grenoble Electrical Engineering Laboratory, Grenoble-INP/UJF/CNRS/ENSE3, BP046, 38402 Grenoble, France Cedrat, 15 Chemin de Malacher, Inovallée, Meylan Cedex, France
Gérard Meunier
Affiliation:
Grenoble Electrical Engineering Laboratory, Grenoble-INP/UJF/CNRS/ENSE3, BP046, 38402 Grenoble, France
Christophe Guérin
Affiliation:
Cedrat, 15 Chemin de Malacher, Inovallée, Meylan Cedex, France
Brahim Ramdane
Affiliation:
Grenoble Electrical Engineering Laboratory, Grenoble-INP/UJF/CNRS/ENSE3, BP046, 38402 Grenoble, France
Patrice Labie
Affiliation:
Grenoble Electrical Engineering Laboratory, Grenoble-INP/UJF/CNRS/ENSE3, BP046, 38402 Grenoble, France
Delphine Dupuy
Affiliation:
Cedrat, 15 Chemin de Malacher, Inovallée, Meylan Cedex, France
*
Get access

Abstract

This paper presents 2D and 3D homogenization techniques for laminated iron cores in the frequency domain. In 2D, two approaches (analytical and numerical) are compared in terms of complex reluctivity considering tangential magnetic field to laminations. The analytical approach is generalized to 3D problems. The validation performed on homogenized block gives satisfactory results only in case of closed-core or thin air gap open-core. Thus, we have a correct approximation only when the magnetic field is essentially parallel to laminations. In order to remediate the poor approximation of losses due to non parallel magnetic field component and model large air gap devices, we propose an alternative to block homogenization. A validation is done on a laminated open-core inductance.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution to the Topical Issue “Numelec 2012”, Edited by Adel Razek.

References

Preis, K., Bíró, O., Tičar, I., IEEE Trans. Magn. 41, 1412 (2005)CrossRef
Gyselinck, J., Vendevelde, L., Melkebeek, J., IEEE Trans. Magn. 35, 1191 (1999)CrossRef
Meunier, G., Charmoille, V., Guérin, C., Labie, P., Maréchal, Y., IEEE Trans. Magn. 46, 3409 (2010)CrossRef
Silva, V.C., Meunier, G., Foggia, A., IEEE Trans. Magn. 31, 2139 (1995)CrossRef
Krähenbühl, L., Dular, P., Zeidan, T., Buret, F., IEEE Trans. Magn. 40, 111 (2004)
Gyselinck, J., Dular, P., IEEE Trans. Magn. 40, 856 (2004)CrossRef
Dular, T.P., Gyselinck, J., Geuzaine, C., Sadowski, N., Bastos, J.P.A., IEEE Trans. Magn. 39, 1424 (2003)CrossRef
Gersem, H.D., Vanaverbeke, S., Samaey, G., IEEE Trans. Magn. 40, 815 (2012)
Flux, Cedrat. Available: www.cedrat.com
Dular, P., Modélisation du champ magnétique et des courants induits dans les systèmes tridimensionnels non linéaires (Faculté des Sciences Appliquées, Université de Liège, Liège, 1996), pp. 2425Google Scholar