Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T22:25:58.155Z Has data issue: false hasContentIssue false

Which Depressed Patients will Respond to Electroconvulsive Therapy?

The Search for Biological Predictors of Recovery

Published online by Cambridge University Press:  02 January 2018

Allan I. F. Scott*
Affiliation:
Department of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF

Abstract

A small yet significant minority of contemporary patients with endogenous depressive illness who are treated with electroconvulsive therapy (ECT) gain little or no benefit. It is argued that the use of clinical features alone may not improve the ability to predict outcome after ECT. Many biological measures have been used to attempt to identify depressed patients for whom ECT would be an effective treatment, but none has yet been shown to be superior to clinical predictors. Depressed patients show a wide range of physiological responses to the first treatment of a course of ECT. Of these physiological responses, estimations of seizure threshold and of the release of posterior pituitary peptides merit further investigation as putative predictors of recovery.

Type
Annotation
Copyright
Copyright © The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberg-Wistedt, A., Martensson, B., Bertilsson, L. & Malmgren, R. (1986) Electroconvulsive therapy effects on cerebrospinal fluid monoamine metabolites and platelet serotonin uptake in melancholia. Convulsive Therapy, 2, 9198.Google ScholarPubMed
Abrams, R. (1982) Clinical prediction of ECT response in depressed patients. Psychopharmacology Bulletin, 18, 4850.Google Scholar
Abrams, R. & Swartz, C. M. (1985) Electroconvulsive therapy and prolactin release: correlation to treatment response in melancholia. Convulsive Therapy, 1, 3842.Google Scholar
Albala, A. A., Greden, J. F., Tarika, J. & Carroll, B. J. (1981) Changes in serial dexamethasone suppression tests among unipolar depressives receiving electroconvulsive therapy. Biological Psychiatry, 16, 551560.Google Scholar
Albala, A. A., Haskett, R. F. & Greden, J. F. (1984) Neuroendocrine markers in the practice of ECT. In ECT: Basic Mechanisms (eds Lerer, B., Weiner, R. D. & Belmaker, R. H.). London: John Libbey.Google Scholar
Alexopoulos, J. S., Inturrisi, C. E., Lipman, R., Frances, R., Haycocks, J., Dougherty, J. H. & Rossier, J. (1983) Plasma immunoreactive beta-endorphin levels in depression: effects of electroconvulsive therapy. Archives of General Psychiatry, 40, 181183.CrossRefGoogle ScholarPubMed
American Psychiatric Association (1978) Electroconvulsive Therapy, Task Force Report 14. Washington: APA.Google Scholar
Aperia, B., Thoren, N. & Wetterberg, L. (1985) Prolactin and thyrotropin in serum during electroconvulsive therapy in patients with major depressive illness. Acta Psychiatrica Scandinavica, 72, 302308.CrossRefGoogle ScholarPubMed
Arana, G. W., Baldessarini, R. J. & Ornsteen, N. (1985) The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Archives of General Psychiatry, 42, 11931204.Google Scholar
Balldin, J. (1982) Factors influencing prolactin release induced by electroconvulsive therapy. Acta Psychiatrica Scandinavica, 65, 365369.Google ScholarPubMed
Balldin, J., Granerus, A. K., Lindstedt, J., Modigh, K. & Walinder, J. (1982) Neuroendocrine evidence for increased responsiveness of dopamine receptors in humans following electroconvulsive therapy. Psychopharmacology, 76, 371376.CrossRefGoogle ScholarPubMed
Barkai, A. I. & Nelson, H. D. (1987) Alterations by antidepressants of cerebrospinal fluid formation and calcium distribution dynamics in the intact rat brain. Biological Psychiatry, 22, 892898.Google Scholar
Carman, J. S., Post, R. M., Goodwin, F. K. & Bunney, W. E. (1977) Calcium and electroconvulsive therapy of severe depressive illness. Biological Psychiatry, 12, 517.Google Scholar
Carney, M. W. P., Roth, M. & Garside, R. F. (1965) The diagnosis of depressive syndromes and the prediction of ECT response. British Journal of Psychiatry, 111, 659674.Google Scholar
Carroll, B. J., Mendels, J. & Sugarman, A. A. (1976a) Urinary free cortisol excretion in depression. Psychological Medicine, 6, 4350.Google Scholar
Carroll, B. J., Curtis, J. C. & Mendels, J. (1976b) Cerebrospinal fluid and plasma free Cortisol concentrations in depression. Psychological Medicine, 6, 235244.Google Scholar
Carroll, B. J., Curtis, J. C. & Mendels, J. (1976c) Neuroendocrine regulation in depression – I. Limbic system – adrenocortical dysfunction. Archives of General Psychiatry, 33, 10391044.CrossRefGoogle ScholarPubMed
Carroll, B. J., Feinbero, M., Greden, J. F., Tarika, J., Albala, A. A., Haskett, R. F., James, N. M., Kronfol, Z., Lohr, N., Steiner, M., de Vigne, J. P. & Young, E. (1981) A specific laboratory test for the diagnosis of melancholia: standardisation, validation, and clinical utility. Archives of General Psychiatry, 38, 1522.Google Scholar
Checkley, S. A. (1980) Neuroendocrine tests of monoamine function in man: a review of basic theory and its applications to the study of depressive illness. Psychological Medicine, 10, 3553.Google Scholar
Christie, J. E., Whalley, L. J., Brown, N. S. & Dick, H. (1982) Effect of ECT on the neuroendocrine response to apomorphine in severely depressed patients. British Journal of Psychiatry, 140, 268273.CrossRefGoogle ScholarPubMed
Christie, J. E., Whalley, L. J. Dick, H., Blackwood, D. H. R., Blackburn, I. M. & Fink, G. (1986) Raised plasma cortisol concentrations a feature of drug-free psychotics and not specific for depression. British Journal of Psychiatry, 148, 5865.Google Scholar
Cooper, S. J., Kelly, J. G. & King, D. J. (1985) Adrenergic receptors in depression: effects of electroconvulsive therapy. British Journal of Psychiatry, 147, 2329.Google Scholar
Coppen, A., Rao, R., Bishop, M., Abou-Saleh, M. T. & Wood, K. (1980a) Neuroendocrine studies in affective disorders – Part 1. Plasma prolactin response to thyrotropin-releasing hormone in affective disorders: effect of ECT. Journal of Affective Disorders, 2, 311315.Google Scholar
Coppen, A., Rao, R., Bishop, M., Abou-Saleh, M. T. & Wood, K. (1980b) Neuroendocrine studies in affective disorders – Part 2. Plasma thyroid-stimulating hormone response to thyrotropin-releasing hormone in affective disorders: effect of ECT. Journal of Affective Disorders, 2, 317320.CrossRefGoogle ScholarPubMed
Coryell, W. (1982) Hypothalamic-pituitary-adrenal axis abnormality and ECT response. Psychiatry Research, 6, 283291.CrossRefGoogle ScholarPubMed
Coryell, W. (1986) Are serial dexamethasone suppression tests useful in electroconvulsive therapy? Journal of Affective Disorders, 10, 5966.Google Scholar
Coryell, W. & Zimmerman, M. (1983) The dexamethasone suppression test and ECT outcome: a six-month followup. Biological Psychiatry, 18, 2127.Google Scholar
Coryell, W. & Zimmerman, M. (1984) Outcome following ECT for primary unipolar depression: a test of newly proposed response predictors. American Journal of Psychiatry, 141, 862867.Google Scholar
Costain, D. W., Cowen, P. J., Gelder, M. G. & Grahame-Smith, D. G. (1982) Electroconvulsive therapy in the brain: evidence for increased dopamine-mediated responses. Lancet, ii, 400404.Google Scholar
Cowen, P. J. (1986) Neuroendocrine responses as a probe into the mechanisms of action of electroconvulsive therapy. Annals of the New York Academy of Sciences, 462, 163171.Google Scholar
Crow, T. J., Deakin, J. F. W., Johnstone, E. C., MacMillan, J. F., Owens, D. G. C., Lawler, P., Frith, C. D., Stevens, M. & McPherson, K. (1984) The Northwick Park ECT Trial: predictors of response to real and simulated ECT. British Journal of Psychiatry, 144, 227237.Google Scholar
Deakin, J. F. W., Ferrier, I. N., Crow, T. J., Johnstone, E. C. & Lawler, P. (1983) Effects of ECT on pituitary hormone release: relationship to seizure, clinical variables and outcome. British Journal of Psychiatry, 143, 618624.CrossRefGoogle ScholarPubMed
Decina, P., Sackeim, H. A. & Malitz, S. (1983) Prognostic value of serial dexamethasone suppression tests during and following ECT. Psychopharmacology Bulletin, 19, 8587.Google Scholar
Decina, P., Sackeim, H. A., Kahn, D. A., Pierson, D., Hopkins, N. & Malitz, S. (1987) Effects of ECT on the TRH stimulation test. Psychoneuroendocrinology, 12, 2934.CrossRefGoogle ScholarPubMed
D'Elia, G., Ottosson, J.-O. & Stromgren, L. S. (1983) Present practice of electroconvulsive therapy in Scandinavia. Archives of General Psychiatry, 40, 577581.Google Scholar
Devanand, D. P., Decina, P., Sackeim, H. A., Hopkins, N., Novacenko, H. & Malitz, S. (1987) Serial dexamethasone suppression tests in initial suppressors and non-suppressors treated with electroconvulsive therapy. Biological Psychiatry, 22, 463472.Google Scholar
Dykes, S., Scott, A. I. F., Gow, S. M. & Whalley, L. J. (1987) The effects of seizure duration on serum TSH concentration after ECT. Psychoneuroendocrinology, 12, 477482.CrossRefGoogle ScholarPubMed
Dysken, M. W., Pandey, G. N., Chan, S. S., Hicks, R. & Davis, J. M. (1979) Serial post-dexamethasone cortisol levels in a patient undergoing ECT. American Journal of Psychiatry, 136, 13281329.Google Scholar
Fink, M. (1979) Convulsive Therapy: Theory and Practice. New York: Raven Press.Google Scholar
Fink, M., Gujavarty, K. & Greenberg, L. (1987) Serial dexamethasone suppression tests and clinical outcome in ECT. Convulsive Therapy, 3, 111120.Google ScholarPubMed
Flach, F. F. (1964) Calcium metabolism in states of depression. British Journal of Psychiatry, 110, 588593.Google Scholar
Fragalla, F. F. & Flach, F. F. (1970) Studies of mineral metabolism in mental depression – 1. The effects of imipramine and electroconvulsive therapy on calcium balance and kinetics. Journal of Nervous and Mental Disease, 151, 120129.Google Scholar
Funkenstein, D. H., Greenblatt, M. & Solomon, H. C. (1948) Autonomic nervous system changes following electric shock treatment. Journal of Nervous and Mental Disease, 108, 409422.Google Scholar
Gibbons, G. L. (1964) Cortisol secretion rate in depressive illness. Archives of General Psychiatry, 10, 572575.Google Scholar
Grahame-Smith, D. G., Green, A. R. & Costain, D. W. (1978) Mechanism of the antidepressant action of electroconvulsive therapy. Lancet, i, 254257.Google Scholar
Greden, J. F., Albala, A. A., Haskett, R. F., James, N. M., Goodman, L., Steiner, M. & Carroll, B. J. (1980) Normalisation of dexamethasone suppression test: a laboratory index of recovery from endogenous depression. Biological Psychiatry, 15, 449458.Google Scholar
Hamilton, M. (1986) Electroconvulsive therapy: indications and contraindications. Annals of the New York Academy of Sciences, 462, 511.Google Scholar
Havens, L. L., Zileli, M. S., DiMascio, A. & Boling, L. (1959) Changes in catecholamine response to successive electric convulsive treatments. Journal of Mental Science, 105, 821829.Google Scholar
Hobson, R. F. (1953) Prognostic factors in electric convulsive therapy. Journal of Neurology, Neurosurgery and Psychiatry, 16, 275281.Google Scholar
Kastin, A. J., Ehrensing, R. H., Slasch, D. S. & Anderson, M. S. (1972) Improvement in mental depression with decreased thyrotropin response after administration of thyrotropin-releasing hormone. Lancet, ii, 740742.CrossRefGoogle Scholar
Katona, C. L. E. & Aldridge, C. R. (1984) Prediction of ECT response. Neuropharmacology, 23, 281283.Google Scholar
Katona, C. L. E., Aldridge, C. R., Roth, M. & Hyde, J. (1987) The dexamethasone suppression test and prediction of outcome in patients receiving ECT. British Journal of Psychiatry, 150, 315318.Google Scholar
Kendell, R. E. (1981) The present status of electroconvulsive therapy. British Journal of Psychiatry, 139, 265283.CrossRefGoogle ScholarPubMed
Kennard, M. A. & Willner, M. D. (1948) Significance of changes in electroencephalogram which result from shock therapy. American Journal of Psychiatry, 105, 4045.Google Scholar
Kirkegaard, C. & Faber, J. (1986) Influence of free thyroid hormone levels on the TSH response to TRH in endogenous depression. Psychoneuroendocrinology, 11, 491497.Google Scholar
Lipman, R. S., Backup, C., Bobrin, Y., Delaplane, J. M., Doeff, J., Gittleman, S., Joseph, R. & Kanefield, M. (1986a) Dexamethasone suppression test as a predictor of response to electroconvulsive therapy – 1. Inpatient treatment. Convulsive Therapy, 2, 151160.Google Scholar
Lipman, R. S., Uffner, W., Schwalb, N., Ravetz, R., Lief, B., Levy, S. & Levenberg, D. (1986b) Dexamethasone suppression test as a predictor of response to electroconvulsive therapy – 2. Six month followup. Convulsive Therapy, 2, 161167.Google Scholar
Medical Research Council (1965) Clinical trial of the treatment of depressive illness. British Medical Journal, i, 881886.Google Scholar
Misiaszek, J., Cork, R. C., Hameroff, S. R., Finley, J. & Weiss, J. L. (1984) The effect of electroconvulsive therapy on plasma beta endorphin. Biological Psychiatry, 19, 451455.Google Scholar
Modai, I., Rinsky, H. & Cygielman, G. (1986) The DST as a predictor of acute response to treatment with ECT, chlorimipramine, amitriptyline, and phenelzine. Journal of Clinical Psychiatry, 47, 139140.Google Scholar
Mosovich, A. & Katzenelbogen, S. (1948) Electroshock therapy, clinical and electroencephalographic studies. Journal of Nervous and Mental Disease, 107, 517530.Google Scholar
Ottosson, J.-O. (1960) Experimental studies of the mode of action of electroconvulsive therapy. Acta Psychiatrica et Neurologica Scandinavica Supplementum 145.Google Scholar
Ottosson, J.-O. (1962) Seizure characteristics and therapeutic efficiency in electroconvulsive therapy: an analysis of the antidepressant efficiency of grand mal and lidocaine-modified seizures. Journal of Nervous and Mental Disease, 135, 239251.Google Scholar
Ottosson, J.-O. (1974) Systemic biochemical effects of ECT. In Psychobiology of Electroconvulsive Therapy (ed. Fink, M.). London: John Wiley.Google Scholar
Papakostas, Y., Fink, M., Lee, J., Irwin, P. & Johnson, L. (1981) Neuroendocrine measures in psychiatric patients: course and outcome with ECT. Psychiatry Research, 4, 5564.Google Scholar
Prange, A. J., Wilson, I. C., Lara, P. P. & Alltop, L. B. (1972) Effects of thyrotropin-releasing hormone in depression. Lancet, ii, 9991002.Google Scholar
Price, T. R. P., Mackenzie, T. B., Tucker, G. J. & Colver, C. (1978) The dose-response ratio in electroconvulsive therapy: a preliminary study. Archives of General Psychiatry, 35, 11311133.CrossRefGoogle ScholarPubMed
Prudic, J., Sackeim, H. A., Decina, P., Hopkins, N., Roth, F. R. & Malitz, S. (1987) Acute effects of ECT on cardiovascular functioning: relations to patient and treatment variables. Acta Psychiatrica Scandinavica, 75, 344351.Google Scholar
Rich, C. L. & Black, N. A. (1985) The efficiency of ECT: II. Correlation of specific treatment variables to response rate in unilateral ECT. Psychiatry Research, 16, 147154.Google Scholar
Roberts, J. M. (1959) Prognostic factors in the electroshock treatment of depressive states – 2. The application of specific tests. Journal of Mental Science, 105, 703713.Google Scholar
Rose, J. T. (1962) The Funkenstein test – a review of the literature. Acta Psychiatrica Scandinavica, 38, 124153.Google Scholar
Roth, M., Kay, D. W. K., Shaw, J. & Green, J. (1957) Prognosis and pentothal-induced electroencephalographic changes in electroconvulsive treatment. Electroencephalography and Clinical Neurophysiology, 9, 225237.Google Scholar
Roy, A., Pickar, D., Linnolia, M. & Potter, W. Z. (1985) Plasma norepinephrine level in affective disorders: relationship to melancholia. Archives of General Psychiatry, 42, 11811185.CrossRefGoogle ScholarPubMed
Sackheim, H. A., Decina, P., Prohovnik, I. & Malitz, S. (1987a) Seizure threshold in electroconvulsive therapy. Archives of General Psychiatry, 44, 355360.CrossRefGoogle Scholar
Sackheim, H. A., Decina, P. Portnoy, S., Neeley, P. & Malitz, S. (1987b) Studies of dosage, seizure threshold and seizure duration in ECT. Biological Psychiatry, 22, 249268.Google Scholar
Schildkraut, J. J. (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. American Journal of Psychiatry, 112, 509522.Google Scholar
Scott, A. I. F., Whalley, L. J., Bennie, J. & Bowler, G. (1986) Oestrogen-stimulated neurophysin and outcome after electroconvulsive therapy. Lancet, i, 14111414.Google Scholar
Shagass, C. (1954) The sedation threshold: a method for estimating tension in psychiatric patients. Electroencephalography and Clinical Neurophysiology, 6, 221227.Google Scholar
Sharma, I. J., Venkitasubramanian, T. A. & Ajnihotri, B. R. (1986) 3-MHPG as a non-predictor of antidepressant response to imipramine and electroconvulsive therapy. Acta Psychiatrica Scandinavica, 74, 252254.Google Scholar
Slade, A. P. & Checkley, S. A. (1980) A neuroendocrine study of the mechanism of the action of ECT. British Journal of Psychiatry, 137, 217221.Google Scholar
Small, J. G., Small, I. F. & Milstein, Z. (1978) Electrophysiology of EST. In Psychopharmacology: A Generation of Progress (eds Lipton, M. A., Di Mascio, A. & Killam, K. F.). New York: Raven Press.Google Scholar
Thorpe, J. G. (1962) The current status of prognostic test indicators for electroconvulsive therapy. Psychosomatic Medicine, 24, 554568.Google Scholar
Weil-Malherbe, H. (1955) The effect of convulsive therapy on plasma adrenaline and noradrenaline. Journal of Mental Science, 101, 156162.Google Scholar
Weiner, R. D., Rogers, H. J., Welch, C. A., Davidson, J. R. T., Miller, R. D., Weir, D., Cahill, J. F. & Squiz, L. R. (1983) ECT stimulus parameters and electrode placement: relevance to therapeutic and adverse effects. In ECT: Basic Mechanisms (eds Lerer, B., Weiner, R. & Belmaker, R.). London: John Libbey.Google Scholar
Weizman, A., Gil-Ad, I., Grupper, D., Tyano, S. & Laron, Z. (1987) The effect of acute and repeated electroconvulsive treatment on plasma beta-endorphin, growth hormone, prolactin and cortisol secretion in depressed patients. Psychopharmacology, 93, 122126.Google Scholar
Whalley, L. J., Eagles, J. M., Bowler, G. M. R., Bennie, J. G., Dick, H. R., McGuire, R. J. & Fink, G. (1987) Selective effects of ECT on hypothalamic pituitary activity. Psychological Medicine, 17, 312328.Google Scholar
Whiteford, H. A., Peabody, C. A., Czernansky, J. G., Warner, M. D. & Berger, P. A. (1987) Elevated baseline and post-dexamethasone Cortisol levels: a reflection of severity or endogeneity. Journal of Affective Disorders, 12, 199202.Google Scholar
Wyatt, R. J., Portnoy, B., Kupfer, D. J., Snyder, F. & Engelman, K. (1971) Resting plasma catecholamine concentrations in patients with depression and anxiety. Archives of General Psychiatry, 24, 6570.Google Scholar
Zorumski, C. F., Burke, W. J., Rutherford, J. L. & Reich, T. (1986) ECT: clinical variables, seizure duration, and outcome. Convulsive Therapy, 2, 109119.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.