Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T18:13:45.208Z Has data issue: false hasContentIssue false

Schizophrenia and temporal lobe asymmetry

A post-mortem stereological study of tissue volume

Published online by Cambridge University Press:  03 January 2018

J. Robin Highley*
Affiliation:
The Schizophrenia Research Group, Department of Neuropathology, Radcliffe Infirmary, Oxford
Brendan McDonald
Affiliation:
The Schizophrenia Research Group, Department of Neuropathology, Radcliffe Infirmary, Oxford
Mary A. Walker
Affiliation:
The Schizophrenia Research Group, Department of Neuropathology, Radcliffe Infirmary, Oxford
Margaret M. Esiri
Affiliation:
The Schizophrenia Research Group, Department of Neuropathology, Radcliffe Infirmary, Oxford
Timothy J. Crow
Affiliation:
The Schizophrenia Research Group, Department of Neuropathology, Radcliffe Infirmary, Oxford
*
Professor T. J. Crow, POWIC, University Department of Psychiatry, Warneford Hospital, Oxford OX37JX. Tel: +44 1865 223909; Fax +44 1865 244990: e-mail: [email protected]

Abstract

Background

A previous report by Crow of a left-sided increase in temporal horn volume in schizophrenia implies a left-sided loss of tissue.

Aims

To elucidate the structural nature of schizophrenia.

Method

The volume of grey matter in the temporal pole and inferior, middle and superior temporal gyri was measured, in addition to the total volume of grey and white matter, in the temporal lobes of the brains of 29 patients with schizophrenia and 27 controls.

Results

We found a significant left-sided reduction in the superior temporal gyrus in both males and females with schizophrenia, which was related to increasing age of onset in the males. The total volume of temporal lobe grey and white matter was also significantly reduced. Although being more marked on the left than the right, the lateralisation for these total grey and white measures (by contrast with the superior temporal gyrus alone) did not attain formal statistical significance.

Conclusions

Confirmation of a lateralised reduction in the superior temporal gyrus, which is differentially related to age of onset according to gender, adds to evidence that the changes in schizophrenia are in systems that are lateralised. The findings implicate language as the relevant function.

Type
Papers
Copyright
Copyright © 1999 The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altshuler, L. L., Casanova, M. F., Goldberg, T. E., et al (1990) The hippocampus and parahippocampus in schizophrenic, suicide and control brains. Archives of General Psychiatry, 47, 10291034.CrossRefGoogle ScholarPubMed
American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders (4th edn) (DSM–IV). Washington, DC: APA.Google Scholar
Barta, P. E., Peartson, G. D., Powers, R. E., et al (1990) Auditory hallucinations and smaller superior temporal gyral volume in schizophrenia. American Journal of Psychiatry, 147, 14571462.Google ScholarPubMed
Becker, T., Elmer, K., Schneider, F., et al (1996) Confirmation of reduced temporal limbic structure volume on magnetic resonance imaging in male patients with schizophrenia. Psychiatry Research: Neuroimaging, 67, 135143.CrossRefGoogle ScholarPubMed
Bilder, R. M., Houwel, W., Bogerts, B., et al (1994) Absence of regional hemispheric asymmetries in first-episode schizophrenia. American Journal of Psychiatry, 151, 14371447.Google ScholarPubMed
Bogerts, B., Ashtari, M., Degreef, G., et al (1990) Reduced temporal limbic structure volumes on magnetic resonance images in first episode schizophrenia. Psychiatry Research: Neuroimaging, 35, 113.CrossRefGoogle ScholarPubMed
Brown, R., Colter, N., Corsellis, J. A. N., et al (1986) Postmor tem evidence of structural brain changes in schizophrenia: differences in brain weight, temporal horn area, and parahippocampal gyrus compared with affective disorder. Archives of General Psychiatry, 43, 3642.CrossRefGoogle Scholar
Cowell, P. E., Allen, L. S., Zalatimo, N. S., et al (1992) A developmental study of sex and age interactions in the human corpus callosum. Developmental Brain Research, 66, 187192.CrossRefGoogle ScholarPubMed
Crow, T. J. (1990) Temporal lobe asymmetries as the key to the aetiology of schizophrenia. Schizophrenia Bulletin, 16, 433443.CrossRefGoogle Scholar
Crow, T. J. (1997) Schizophrenia as a failure of hemispheric dominance for language. Trends in the Neurosciences, 20, 339343.Google ScholarPubMed
Crow, T. J., Ball, J., Bloom, S. R., et al (1989) Schizophrenia as an anomaly of development of cerebral asymmetry. Archives of General Psychiatry, 46, 11451150.CrossRefGoogle ScholarPubMed
Crow, T. J., Crow, L. R., Done, D. J., et al (1998) Relative hand skill predicts academic ability: global deficits at the point of hemispheric indecision. Neuropsychologia, 36, 12751282.CrossRefGoogle ScholarPubMed
Flaum, M., Swayze, V. W. I., O'Leary, D. S., et al (1995) Effects of diagnosis, laterality, and gender on brain morphology in schizophrenia. American Journal of Psychiatry, 152, 704714.Google ScholarPubMed
Flor-Henry, P. (1969) Psychoses and temporal lobe epilepsy: a controlled investigation. Epilepsia, 10, 363395.CrossRefGoogle ScholarPubMed
Gundersen, H. J. G. & Jensen, E. B. (1987) The efficiency of systematic sampling in stereology and its prediction. Journal of Microscopy, 147, 229263.CrossRefGoogle ScholarPubMed
Highley, J. R., Esiri, M. M., McDonald, B. M., et al (1998) Temporal lobe length is reduced, and gyral folding is increased in schizophrenia: a post-mortem study. Schizophrenia Research, 34, 112.CrossRefGoogle ScholarPubMed
Highley, J. R., Esiri, M. M., McDonald, B. M., et al (1999a) The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post mortem study. Brain, 122, 99110.CrossRefGoogle ScholarPubMed
Highley, J. R., Esiri, M. M., McDonald, B. M., et al (1999b) The size and fibre composition of the anterior commissure with respect to gender and schizophrenia. Biological Psychiatry, 45, 11201127.CrossRefGoogle ScholarPubMed
Johnstone, E. C., Owens, D. G., Crow, T. J., et al (1989) Temporal lobe structure as determined by nuclear magnetic resonance in schizophrenia and bipolar affective disorder. Journal of Neurology, Neurosurgery and Psychiatry, 52, 736741.CrossRefGoogle ScholarPubMed
Klkinis, R., Shenton, M. E., Gerig, G., et al (1994) Temporal lobe sulco-gyral pattern anomalies in schizophrenia: an in vivo MR three-dimensional surface rendering study. Neuroscience Letters, 182, 712.CrossRefGoogle Scholar
Kulynych, J. J., Vladar, K., Jones, D. W., et al (1996) Superior temporal gyrus volume in schizophrenia: a study using MRI morphometry assisted by surface rendering. American Journal of Psychiatry, 153, 5056.Google ScholarPubMed
Levitan, C., Ward, P. B. & Catts, S. V. (1998) Superior temporal gyral volumes and laterality correlates of auditory hallucinations in schizophrenia. Schizophrenia Research, 29, 71.CrossRefGoogle Scholar
McDonald, B., Highley, J. R., Walker, M. A., et al (1998) A post mortem study of the size and asymmetry of the parahippocampal and fusiform gyri in schizophrenia. Schizophrenia Research, 29, 71.CrossRefGoogle Scholar
McDonald, B., Highley, J. R., Walker, M. A., et al (1999) Anomalous asymmetry of fusiform and parahippocampal gyrus grey matter in schizophrenia: a post-mortem study. American Journal of Psychiatry, in press.CrossRefGoogle Scholar
Mirra, S. S., Heyman, A., McKeel, D., et al (1991) The consortium to establish a registry for Alzheimer's disease (CERAD). Part II, Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology, 41, 479486.CrossRefGoogle Scholar
Pakkenberg, B. (1987) Post-mortem study of chronic schizophrenic brains. British Journal of Psychiatry, 151, 744752.CrossRefGoogle ScholarPubMed
Petty, R. G., Barta, P. E., Peartson, G. D., et al (1995) Reversal of asymmetry of the planum temporale in schizophrenia. American Journal of Psychiatry, 152, 715721.Google ScholarPubMed
Quester, R. & Schröder, R. (1997) The shrinkage of the human brain stem during formalin fixation and embedding in paraffin. Journal of Neuroscience Methods, 75, 8189.CrossRefGoogle ScholarPubMed
Shenton, M. E., Kikinis, R., Jolesz, F. A., et al (1992) Abnormalities of the left temporal lobe and thought disorder in schizophrenia. New England Journal of Medicine, 327, 604612.CrossRefGoogle ScholarPubMed
Slater, E. & Beard, A. W. (1963) The schizophrenia-like psychoses of epilepsy. I. Psychiatric aspects. British Journal of Psychiatry, 109, 95150.CrossRefGoogle Scholar
Suddath, R. L., Christison, G. W., Torrey, E. F., et al (1990) Anatomical abnormalities of monozygotic twins discordant for schizophrenia. New England Journal of Medicine, 321, 789794.CrossRefGoogle Scholar
Turetsky, B., Cowell, P. E., Gur, R. C., et al (1995) Frontal and temporal lobe brain volumes in schizophrenia. Archives of General Psychiatry, 52, 10611070.CrossRefGoogle ScholarPubMed
Vogeley, K., Schneider-Axman, T., Tepest, U., et al (1998) Disturbed gyrification and reduced volume of the prefrontal lobe in male schizophrenics – a morphometric post-mortem study. Schizophrenia Research, 29, 87.CrossRefGoogle Scholar
Ward, K. E., Friedman, L., Wise, A., et al (1996) Meta-analysis of brain and cranial size in schizophrenia. Schizophrenia Research, 21, 197213.CrossRefGoogle Scholar
Zipursky, R. B., Lim, K. O., Sullivan, E. V., et al (1992) Widespread cerebral gray matter volume deficits in schizophrenia. Archives of General Psychiatry, 49, 195205.CrossRefGoogle ScholarPubMed
Zipursky, R. B., Marsh, L., Lim, K. O., et al (1994) Volumetric MRI assessment of temporal tobe structures in schizophrenia. Biological Psychiatry, 35, 501516.CrossRefGoogle Scholar
Submit a response

eLetters

No eLetters have been published for this article.