Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T06:11:06.447Z Has data issue: false hasContentIssue false

Exploring the Functional Role of Monoaminergic Neurotransmission

A method for exploring neurotransmitter dysfunction in psychiatric disorders

Published online by Cambridge University Press:  02 January 2018

R. J. Dolan*
Affiliation:
National Hospital for Neurology and Neurosurgery, London WC1N 3BG, Academic Department of Psychiatry, Royal Free Hospital School of Medicine, London NW3 2QG, and MRC Cyclotron Unit, Hammersmith Hospital, London W12 0HS
P. M. Grasby
Affiliation:
MRC Cyclotron Unit, and Academic Department of Psychiatry, Royal Free Hospital School of Medicine
*
Correspondence
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorials
Copyright
Copyright © 1994 The Royal College of Psychiatrists 

References

Altman, H. J. & Normile, H. J. (1988) What is the nature of the role of the serotonergic nervous system in learning and memory: prospects for development of an effective treatment strategy for senile dementia. Neurobiology of Aging, 9, 627638.Google Scholar
Arnsten, A. F. T. & Goldman-Rakic, P. S. (1985) Alpha2-adrenergic mechanisms in the prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science, 230, 12731276.Google Scholar
Berger, B., Gaspar, P. & Verney, C. (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends in Neuroscience, 14, 2127.Google Scholar
Brown, R. M., Crane, A. M. & Goldman, P. S. (1979) Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Research, 168, 133150.CrossRefGoogle ScholarPubMed
Brozoski, T. J., Brown, R. M. Rosvold, H. E., et al (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science, 205, 929932.Google Scholar
Bunney, B. S. & Chiodo, L. A. (1984) Mesocortical dopamine systems: further electrophysiological and pharmacological characteristics. In Monoamine Innervation of Cerebral Cortex, pp. 236277. New York: Liss.Google Scholar
Coop, C. F. & McNaughton, N. (1991) Buspirone affects hippocampal rhythmical slow activity through serotonin 1A rather than dopamine D2 receptors. Neuroscience, 40, 169174.Google Scholar
Daniel, D. G., Weinberger, D. R., Jones, D. W., et al (1991) The effects of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. Journal of Neuroscience, 11, 19071917.CrossRefGoogle ScholarPubMed
Dismukes, R. K. (1979) New concepts of molecular communication among neurons. Behavioural and Brain Sciences, 2, 409448.Google Scholar
Edelman, G. (1987) Neural Darwinism. New York: Basic Books.Google Scholar
Edelman, G. & Mountcastle, V. B. (1977) The Mindful Brain: Cortical Organisation and the Group-Selective Theory of Higher Brain Function, pp. 7100. Cambridge MA & London: MIT Press.Google Scholar
Farde, L., Wiesel, F. A., Stone-Elander, S., et al (1990) D2 dopamine receptors in neuroleptic-naive schizophrenic patients. Archives of General Psychiatry, 47, 213219.Google Scholar
Ferron, J. H., Thierry, A. M., Ledouarin, C., et al (1984) Inhibitory influence of mesocortical dopaminergic system on spontaneous activity or excitatory response induced from the thalamic mediodorsal nucleus in the rat medial prefrontal cortex. Brain Research, 302, 257265.Google Scholar
Foote, S. L., Freedman, R. & Oliver, A. P. (1975) Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain Research, 86, 229242.Google Scholar
Friston, K. J., Frith, C. D., Liddle, P. F., et al (1991a) The cerebellum in skill learning (abstract). Journal of Cerebral Blood Flow and Metabolism, 11 (suppl. 2) S440.Google Scholar
Friston, K. J., Grasby, P., Frith, C. D., et al (1991b) The neurotransmitter basis of cognition: psychopharmacological activation studies using positron emission tomography. In Exploring Brain Functional Anatomy with Positron Tomography, Ciba Foundation Symposium, (eds Wheelan, J. & Chadwick, D. J.), pp. 7692. Chichester: Wiley Google Scholar
Friston, K. J., Frith, C. D., Passingham, R. E., et al (1992a) Entropy and cortical activity: information theory and PET findings. Cerebral Cortex, 2, 259267.Google Scholar
Friston, K. J., Grasby, P., Bench, C. J., et al (1992b) Measuring the neuromodulatory effects of drugs in man with positron emission tomography. Neuroscience Letters, 141, 106110.Google Scholar
Frith, C. D., Dowdy, J., Ferrier, I. N., et al (1985) Selective impairment of paired associate learning after administration of a centrally acting adrenergic agonist (clonidine). Psychopharmacology, 87, 490493.CrossRefGoogle ScholarPubMed
Frith, C. D., Friston, K. J., Liddle, P. F., et al (1991) Willed action and the prefrontal cortex in man: a study with PET. Proceedings of the Royal Society of London B, 244, 241246.Google Scholar
Gaspar, P., Berger, B., Febvret, A., et al (1989) Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. Journal of Comparative Neurology, 279, 249271.Google Scholar
Goldman-Rakic, P. S. (1987) Circuitry of primate prefrontal cortex and regulation of behaviour by representational memory. In Handbook of Physiology - The Nervous System, Vol V (eds Mountcastle, V. B., Bloom, F. E. & Geiger, S. R.), pp. 373417. Baltimore: Williams & Wilkins.Google Scholar
Goldman-Rakic, P. S. (1988) Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neurosciences, 11, 137156.Google Scholar
Goldman-Rakic, P. S., Leranth, C., Williams, M. S., et al (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proceedings of the National Academy of Sciences, 86, 90159019.Google Scholar
Goldman-Rakic, P. S., Lidow, M. S. & Gallager, D. W. (1990) Overlap of dopaminergic, adrenergic, and serotonergic receptors and complementarity of their subtypes in primate prefrontal cortex. Journal of Neuroscience, 10, 21252138.Google Scholar
Grasby, P. M., Friston, K. J., Bench, C., et al (1992a) The effects of the 5-HT1A partial agonist, buspirone, on regional cerebral blood flow in man. Psychopharmacology, 108, 380386.Google Scholar
Grasby, P. M., Friston, K. J., Bench, C., et al (1992b) The effect of apomorphine and buspirone on regional cerebral blood flow during the performance of a cognitive task - measuring neuromodulatory effects of psychotropic drugs in man. European Journal of Neuroscience, 4, 12031212.Google Scholar
Gurd, J. M. & Ward, C. D. (1989) Retrieval from semantic and letter-initial categories in patients with Parkinson's disease. Neuropsychological 27, 743746.CrossRefGoogle ScholarPubMed
Kaczmarek, C. & Levitan, K. (1987) What is neuromodulation? In Neuromodulation: The biochemical control of neuronal excitability (eds Kaczmarek, C. & Levitan, K.), pp. 317. Oxford: Oxford University Press.Google Scholar
Kelly, P. A. T., Davis, C. J. & Goodwin, G. M. (1988) Differential patterns of local glucose utilization in response to 5-hydroxytryptamine agonists. Neuroscience, 25, 907915.Google Scholar
Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., et al (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H] raclopride, [3H] spiperone and [3H] SCH23390. Neuroscience, 40, 657671.Google Scholar
Losonczy, M. F., Davidson, M. & Davis, K. L. (1987) The dopamine hypothesis of schizophrenia. In Psychopharmacology: The Third Generation of Progress (ed. Meltzer, H. Y.), pp. 715726. New York: Raven Press.Google Scholar
Mantz, J., Milla, C., Glowinski, J., et al (1991) Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous activity and of the evoked responses in the rat prefrontal cortex. Progress in Neurobiology, 36, 195200.Google Scholar
McEntee, W. J. & Crook, T. H. (1990) Age-associated memory impairment: a role for catecholamines. Neurology, 40, 526530.Google Scholar
Mesulam, M.-M. (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28, 597613.Google Scholar
Morrison, J. H. & Foote, S. L. (1986) Noradrenergic and serotonergic innervation of cortical and thalamic visual structures in old and new world monkeys. Journal of Comparative Neurology, 243, 117138.Google Scholar
Oades, R. D. & Halliday, G. M. (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Research Reviews, 12, 117165.CrossRefGoogle Scholar
Papadopoulos, G. C. & Parnavelas, J. G. (1991) Monoamine systems in the cerebral cortex: evidence for anatomical specificity. Progress in Neurobiology, 36, 195200.Google Scholar
Pazos, A., Probst, A. & Palacios, J. M. (1987) Serotonin receptors in the human brain. Autoradiographic mapping of serotonin-1 receptors. Neuroscience, 21, 97122.Google Scholar
Peroutka, A. J. (1985) Selective interaction of novel anxiolytics with 5-hydroxytryptamine1A receptors. Biological Psychiatry, 20, 971979.CrossRefGoogle Scholar
Petersen, S. E., Fox, P. T., Posner, M. I., et al (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331, 585589.Google Scholar
Posner, M. I., Petersen, S. E., Fox, P. T., et al (1988) Localization of cognitive operations in the human brain. Science, 240, 16271631.Google Scholar
Raichle, M. E. (1987) Circulatory and metabolic correlates of brain function in normal humans. In Handbook of Physiology. The Nervous System. Higher Functions of the Brain (ed. Plum, F.), pp. 643674. Bethesda, MD: American Physiologic Society.Google Scholar
Rakic, P., Goldman-Rakic, P. S. & Gallager, D. W. (1988) Quantitative autoradiography of major neurotransmitter receptors in the monkey striate and extrastriate cortex. Journal of Neuroscience, 8, 36703690.Google Scholar
Sawaguchi, T., Matsumura, M. & Kubota, K. (1990a) Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. Journal of Neurophysiology, 63, 13851399.Google Scholar
Sawaguchi, T., Matsumura, M. & Kubota, K. (1990b) Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex. Journal of Neurophysiology, 63, 14011411.Google Scholar
Sawaguchi, T., Matsumura, M. & Goldman-Rakic, P. S. (1991) D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science, 251, 947950.Google Scholar
Servan-Schreiber, D., Printz, H., et al (1990) A network model of catecholamine effects: gain, signal-to-noise ratio, and behaviour. Science, 249, 892895.Google Scholar
Smiley, J. F., Williams, S. M., Szigeti, K., et al (1992) Light and electron microscopic characterisation of dopamine-immunoreactive processes in human cerebral cortex. Journal of Comparative Neurology, 321, 325335.Google Scholar
Sprouse, J. S. & Aghajanian, G. K. (1988) Responses of hippocampal pyramidal cells to putative serotonin 5-HT1A and 5-HT1B agonists: a comparative study with dorsal raphe neurons. Neuropsychopharmacology, 27, 707715.Google Scholar
Traber, J. & Glaser, T. (1987) 5-HT1A receptor-related anxiolytics (abstract). Trends in Pharmacological Science, 8, 432437.Google Scholar
Willner, P., Muscat, R., Papp, M., et al (1992) Dopamine, depression and anti-depressant drugs. In The Mesolimbic Dopamine System: from Motivation to Action (eds Willner, P. & Scheel-Kruger, J.), pp. 387410. Chichester: Wiley.Google Scholar
Wise, R., Chollet, F., Hadar, U., et al (1991) Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain, 114, 18031817.CrossRefGoogle ScholarPubMed
Wolfe, N., Katz, D. I., Albert, M. L., et al (1990) Neuropsychological profile linked to low dopamine in Alzheimer's disease, major depression and Parkinson's disease. Journal of Neurological and Neurosurgical Psychiatry, 53, 9159197.Google Scholar
Wong, D. F., Wagner, H. N. Jr., Tune, L. E., et al (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science, 234, 15581563.Google Scholar
Wree, A., Zilles, J., Schleicher, A., et al (1987) Effect of the 5-HT1A receptor agonist on the local cerebral glucose utilization of the rat hippocampus. Brain Research, 436, 283290.CrossRefGoogle ScholarPubMed
Submit a response

eLetters

No eLetters have been published for this article.