Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T22:39:57.287Z Has data issue: false hasContentIssue false

Cyclic AMP in the CSF of Patients with Schizophrenia

Published online by Cambridge University Press:  29 January 2018

J. Biederman
Affiliation:
Jerusalem Mental Health Centre, POB 140, Jerusalem, Israel
R. Rimon
Affiliation:
Jerusalem Mental Health Centre, POB 140, Jerusalem, Israel
R. Ebstein
Affiliation:
Jerusalem Mental Health Centre, POB 140, Jerusalem, Israel
R. H. Belmaker
Affiliation:
Jerusalem Mental Health Centre, POB 140, Jerusalem, Israel
J. T. Davidson
Affiliation:
Hadassah Hospital, Hebrew University of Jerusalem

Summary

The dopamine hypothesis of schizophrenia proposes that schizophrenia is associated with increased brain dopaminergic function. Because dopamine is thought to stimulate the production of cyclic AMP in the brain, we hypothesized that CSF cyclic AMP would be increased in schizophrenia. Cyclic AMP in the CSF was determined in 19 schizophrenic patients who had not received neuroleptic treatment in the preceding two weeks. No significant difference could be shown between CSF cyclic AMP in these patients and CSF cyclic AMP in 10 psychiatrically normal controls.

Type
Research Article
Copyright
Copyright © Royal College of Psychiatrists 1977 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angrist, B. M., Shopsin, B. & Gershon, S. (1971) The comparative psychotomimetic effect of stereoisomers of amphetamine. Nature, 234, 153–3.CrossRefGoogle ScholarPubMed
Angrist, B. M., Santhananthan, G., Wilk, S. & Gershon, S. (1979) Amphetamine psychosis: Behavioral and biochemical aspects. Journal of Psychiatric Research, 11, 1323.CrossRefGoogle Scholar
Biederman, J., Rimon, R., Ebstein, R. & Belmaker, R. Neuroleptics reduce spinal fluid cyclic AMP in schizophrenic patients. Neuropsychobiology. In press.Google Scholar
Bowers, M. B. (1974) Central dopamine turnover in schizophrenic syndromes. Archives of General Psychiatry, 31, 50–4.CrossRefGoogle ScholarPubMed
Carenzi, A., Gillin, J. C., Allessandro, G., Schwartz, M. A., Tarbucchi, M. & Wyatt, R. J. (1975) Dopamine-sensitive adenylyl cyclase in human caudate nucleus. Archives of General Psychiatry, 32, 1056–9.CrossRefGoogle ScholarPubMed
Carpenter, N. T., Strauss, J. J. & Bartko, J. (1974) The diagnosis and understanding of schizophrenia. Part 1: Use of signs and symptoms for the identification of schizophrenic patients. Schizophrenia Bulletin, 11, 3749.CrossRefGoogle Scholar
Connel, P. H. (1958) Amphetamine Psychosis, Maudsley Monograph No. 5, London: Oxford University Press.Google Scholar
Cramer, H., Goodwin, F., Post, R. M. & Bunney, W. E. (1972) Effects of probenecid and exercise on cerebrospinal fluid cyclic AMP in affective illness. Lancet, i, 1346–7.Google Scholar
Greengaard, P. (1974) Biochemical characterization of the dopamine receptor in the mammalian caudate nucleus. Journal of Psychiatric Research, 11, 87–9.CrossRefGoogle Scholar
Griffith, J. J. & Cavanaugh, J. (1970) Psychosis induced by the administration of d-amphetamine to human volunteers. In Psychotomimetic Drugs (ed. Efron, D. H.), pp 287–94. New York: Raven Press.Google Scholar
Hökfelt, T., Ljungdahl, A., Fuxe, K. & Johansson, O. (1974) Dopamine nerve terminals in the rat limbic cortex: Aspects of the dopamine hypothesis of schizophrenia. Science, 184, 177–9.Google ScholarPubMed
Iversen, L. (1975) Dopamine receptors in the brain. Science, 188, 1084–9.CrossRefGoogle ScholarPubMed
Karobath, M. & Leitich, H. (1974) Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain. Proceedings of the National Academy of Science of the U.S.A., 71, 2915–18.CrossRefGoogle ScholarPubMed
Kebabian, J. W., Petzold, G. L. & Greengaard, P. (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of the rat brain and its similarity to the dopamine receptor. Proceedings of the National Academy of Science of the U.S.A., 69, 2145–9.CrossRefGoogle Scholar
Korf, J., Praag, H. M. van & Sebens, J. B. (1971) Effect of intravenously administered probenecid in humans on the levels of 5-hydroxyindolacetic acid, homovanillic acid and 3-methoxy-4 hydroxy-phenyl glycol in cerebrospinal fluid. Biochemical Pharmacology, 20, 659–68.CrossRefGoogle Scholar
Matthysse, S. (1974) Dopamine and the pharmacology of schizophrenia: The state of the evidence. Journal of Psychiatric Research, 11, 107–13.CrossRefGoogle ScholarPubMed
Miller, R. J., Horn, A. J. & Iversen, L. L. (1974) The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3′5′-monophosphate production in rat neostriatum and limbic forebrain. Molecular Pharmacology, 10, 759–66.Google Scholar
Post, R. M., Fink, E., Carpenter, W. T. & Goodwin, F. K. (1975) Cerebrospinal fluid amine metabolites in acute schizophrenia. Archives of General Psychiatry, 32, 1063–9.CrossRefGoogle ScholarPubMed
Praag, H. M. van & Korf, J. (1975) The Dopamine hypothesis of schizophrenia in, On The Origin of Schizophrenic Psychoses (ed. van Praag, H. M.), pp 8199. Amsterdam: De Erven Bohn BV.Google Scholar
Rimon, R., Roos, B. E., Räkkölainen, V. & Alanen, Y. (1971) The content of 5-hydroxyindoleacetic acid and homovanillic acid in the cerebrospinal fluid of patients with acute schizophrenia. Journal of Psychosomatic Research, 15, 375–8.CrossRefGoogle ScholarPubMed
Schildkraut, J. J., Gordon, E. K. & Durell, J. (1965) Catecholamine metabolism in affective disorders, 1. Journal of Psychiatric Research, 3, 213–28.CrossRefGoogle Scholar
Sedvall, G., Mayevsky, A., Samuel, D. & Fri, C. G. (1973) Oxygen-18 in measurement of dopamine turnover in rat brain. In Frontiers in Catecholamine Research (eds Usdin, E. and Snyder, S.), pp 1071–7. New York: Pergamon Press.Google Scholar
Sebens, J. B. & Korf, J. (1975) Cyclic AMP in cerebrospinal fluid: Accumulation following probenecid and biogenic amines. Experimental Neurology, 46, 333–44.CrossRefGoogle Scholar
Siggins, G. R., Oliver, A. P., Hoffer, B. J. & Bloom, F. E. (1971) Cyclic adenosine monophosphate and norepinephrine: Effects on transmembrane properties of cerebellar Purkinje cells. Science, 171, 192.CrossRefGoogle ScholarPubMed
Snyder, S. H. (1973) Amphetamine psychosis: a ‘model’ schizophrenia mediated by catecholamines. American Journal of Psychiatry, 130, 61–7.CrossRefGoogle Scholar
Snyder, S. H. Banerjee, S. P., Yamamura, H. I. & Greenberg, D. (1974) Drugs, neurotransmitters and schizophrenia. Science, 184, 1243–53.CrossRefGoogle ScholarPubMed
Snyder, S. H. Taylor, K. M., Coyle, J. R. & Meyerhoff, J. L. (1970) The role of brain dopamine in behavioral regulation and the action of psychotropic drugs. American Journal of Psychiatry, 127, 199207.CrossRefGoogle ScholarPubMed
Tamarkin, N. R., Goodwin, F. K. & Axelord, J. (1970) Rapid elevation of biogenic amine metabolites in human CSF following probenecid. Life Science, 9, 1394–408.Google ScholarPubMed
Tovey, K. C., Oldham, K. G. & Whelan, J. A. M. (1974) A simple direct assay for cyclic AMP in plasma and other biological samples using an improved competitive protein binding technique. Clinica Chimica Acta, 56, 221–34.CrossRefGoogle ScholarPubMed
Submit a response

eLetters

No eLetters have been published for this article.