Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T00:46:03.316Z Has data issue: false hasContentIssue false

Characteristic Plasma Hormone Changes in Alzheimer's Disease

Published online by Cambridge University Press:  02 January 2018

J. E. Christie*
Affiliation:
MRC Brain Metabolism Unit
L. J. Whalley
Affiliation:
MRC Brain Metabolism Unit
J. Bennie
Affiliation:
MRC Brain Metabolism Unit
H. Dick
Affiliation:
MRC Brain Metabolism Unit
I. M. Blackburn
Affiliation:
MRC Brain Metabolism Unit
D. H. R. Blackwood
Affiliation:
MRC Brain Metabolism Unit
G. Fink
Affiliation:
MRC Brain Metabolism Unit
*
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF

Abstract

A systematic endocrine investigation in dementia, depression and control subjects showed that plasma growth hormone (GH) was higher in the morning and plasma TSH concentrations were higher throughout the day in Alzheimer-type dementia (ATD) than in age-matched depressed patients (MDD), and plasma TSH concentrations were also higher throughout the day in female ATD compared with age-matched female control subjects. The increased plasma TSH concentrations could not be due to reduced negative feedback because plasma T3, T4 and rT3 were in the normal range. Plasma concentrations of oestrogen-stimulated neurophysin (ESN) were lower throughout the day in ATD compared with MDD and controls and lower in the morning compared with other dementias. The high plasma GH and TSH concentrations in ATD may reflect the reduced hypothalamic content of somatostatin in ATD, and the reduced concentrations of ESN may reflect reduced cholinergic activity in ATD prain. These selective hormonal changes provide a useful diagnostic test for Alzheimer's disease.

Type
Research Article
Copyright
Copyright © 1987 The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balldin, J., Gottfries, C.-G., Karlsson, I., Li Ndstedt, G., Lanostrom, G. & Walinder, J. (1983) Dexamethasone suppression test and serum prolactin in dementia disorders. British Journal of Psychiatry, 143, 277281.Google Scholar
Carpenter, W. T. Jr. & Bunney, W. E. (1971) Adrenal cortical activity in depressive illness. American Journal of Psychiatry, 128, 3140.Google Scholar
Carroll, B. J., Feinberg, M., Greden, J. F. Tarika, J., Albala, A. A., Hasket, R. F., James, N. Mc I., Krnofol, Z., Lohr, N., Steiner, M., de Vione, J. P. & Young, E. (1981) A specific laboratory test for the diagnosis of melancholia. Archives of General Psychiatry, 38, 1522.Google Scholar
Christie, J. E., Whalley, L. J., Dick, H., Blackwood, D. H. R., Blackburn, I. M. & Fink, G. (1986) Raised plasma Cortisol concentrations are a feature of drug-free psychotics and not specific for depression. British Journal of Psychiatry, 148, 5865.Google Scholar
Coppen, A., Abou-Saleh, M., Milln, P., Metcalfe, M., Harwood, J. & Bailey, J. (1983) Dexamethasone suppression test in depression and other psychiatric illness. British Journal of Psychiatry, 142, 498504.Google Scholar
Davies, P. (1979) Neurotransmitter related enzymes in senile dementia of the Alzheimer type. Brain Research, 171, 319327.CrossRefGoogle ScholarPubMed
Davies, P., Katz, D. A. & Crystal, H. A. (1982) Choline acetyl-transferase, somatostatin, and substance P in selected cases of Alzheimer's disease. In Alzheimer's Disease: Report of Progress in Research (eds S. Corkin, K. L. Davis, J. H. Growdon, E. Usdin, J. Wurtman). New York: Raven Press.Google Scholar
Davis, B. M., Levy, M. I., Rosenberg, G. S., Mathe, A. & Davis, K. L. (1982) Relationship between growth hormone and Cortisol and acetylcholine: a possible neuroendocrine strategy for assessing a cholinergic deficit. In Alzheimer's Disease: Report of Progress in Research (eds S. Corkin, K. L. Davis, J. H. Growdon, E. Usdin, J. Wurtman). New York: Raven Press.Google Scholar
Duncan, D. B. (1961) Bayes rules for a common multiple comparisons problem and related student-t problems. Annals of Mathematical Statistics, 32, 1013.Google Scholar
Eisenson, J. (1954) Examination for Aphasia. New York: The Psychological Corporation.Google Scholar
Fliers, E., Swaab, D. F., Pool, W. Chr. & Verwer, R. W. H. (1985) The vasopressin and orcytocin neurones in the human supraoptic and paraventricular nucleus; changes with aging and in senile dementia. Brain Research, 342, 4553.CrossRefGoogle ScholarPubMed
Gibbons, J. (1964) Cortisol secretion rate in depressive illness. Archives of General Psychiatry, 10, 572575.Google Scholar
Hamilton, M. (1960) A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry, 23, 5662.Google Scholar
Hyyppa, M. T., Tenkku, M., Liira, J. & Jaykka, H. (1980) Low cerebrospinal fluid prolactin levels in patients with central cerebral atrophy. Journal of the Neurological Sciences, 47, 145146.Google Scholar
Isaacs, B. & Walky, F. A. (1964) A simplified paired associate test for elderly hospital patients. British Journal of Psychiatry, 110, 8083.Google Scholar
Ishii, T. (1965) Distribution of Alzheimer's neurofibrillary changes in the brain stem and hypothalamus of senile dementia. Acta Neuropathology, 6, 181187.Google Scholar
Kimura, D. & Archibald, Y. (1974) Motor functions of the left hemisphere. Brain, 97, 337350.Google Scholar
Mann, D. M. A., Lincoln, J., Yates, P. O., Stamp, J. E. & Toper, S. (1980) Changes in the monoamine containing neurones of the human CNS in senile dementia. British Journal of Psychiatry, 136, 533541.Google Scholar
Mendelson, W. B. (1982) Studies of human growth hormone secretion in sleep and waking. International Review of Neurobiology, 23, 367389.Google ScholarPubMed
Parry, H. B. & Livett, B. G. (1976) Neurophysin in the brain and pituitary gland of normal and scrapie-affected sheep. Neuroscience, 1, 275299.Google Scholar
Pierotti, A. R., Harmar, A. J., Simpson, J. & Yates, C. M. (1986) High molecular weight forms of somatostatin-like immunoreactivity are reduced in Alzheimer's disease and Down's syndrome. Neuroscience Letters, 63, 141146.CrossRefGoogle ScholarPubMed
Poulain, D. A. & Wakerley, J. B. (1982) Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience, 7, 773808.CrossRefGoogle ScholarPubMed
Raskind, M., Peskind, E., Rivard, M.-F., Veith, R. & Barnes, R. (1982) Dexamethasone suppression test and Cortisol Orcadian rhythm in primary degenerative dementia. American Journal of Psychiatry, 139, 14681471.Google Scholar
Re, R. N., Kourides, I. A., Ridoway, E. C., Weintraub, B. D. & Maloof, F. (1976) The effect of glucocorticoid administration on human pituitary secretion of thyrotropin and prolactin. Journal of Clinical Endocrinology and Metabolism, 43, 338346.Google Scholar
Reichlin, S. (1985) Neuroendocrinology. In Williams Textbook of Endocrinology, (eds J. D. Wilson & D. W. Foster). 7th edn. London: Saunders.Google Scholar
Rossor, M. N., Iversen, L. L., Reynolds, G. P., Mount Joy, C. Q. & Roth, M. (1984) Neurochemical characteristics of early and late onset types of Alzheimer's disease. British Medical Journal, 288, 961964.Google Scholar
Sachar, E. J., Hellman, L., Roffwarg, H. P., Halpern, F., Fukushima, S. & Gallagher, T. (1973) Disrupted 24-hour patterns of Cortisol secretion in psychotic depression. Archives of General Psychiatry, 28, 1924.Google Scholar
Samorajski, J., Ho, B. T., Kralik, P. M. & Hartford, J. T. (1982) Serum prolactin changes with age, senile dementia, and dihydroergotoxine mesylate treatment. In The Aging Brain: Cellular and Molecular Mechanisms of Aging in the Nervous System (eds E. Giacobini, G. Giacobini, G. Filogamo, A. Vernadakis). New York: Raven Press.Google Scholar
Scanlon, M. F., Lewis, M., Weiohtman, D. R., Chan, V. & Hall, R. (1980) The neuroregulation of human thyrotropin secretion. In Frontiers in Neuroendocrinology (eds L. Martini, W. F. Ganong). New York: Raven Press.Google Scholar
Seth, J. & Brown, L. M. (1978) A simple radioimmunoassay for plasma Cortisol. Clinica Chimica Acta, 86, 109120.Google Scholar
Spar, J. E. & Gerner, R. (1982) Does the dexamethasone suppression test distinguish dementia from depression? American Journal of Psychiatry, 139, 238240.Google Scholar
Spitzer, R. L., Endicott, J. & Robins, E. (1978) Research diagnostic criteria: rationale and reliability. Archives of General Psychiatry, 36, 773782.Google Scholar
Turnbridge, W. M. G., Evered, D. C., Hall, R., Appleton, M. B., Clark, F., Evans, J. G., Young, E., Biro, T. & Smith, P. A. (1977) The spectrum of thyroid disease in the community of the Whickham Survey. Clinical Endocrinology, 7, 481493.Google Scholar
Watkins, W. B. & Choy, V. J. (1980) The impact of aging on neuronal morphology in the rat hypothalamo-neurohypophysial system: an immunohistochemical study. Peptides, 1, 239245.Google Scholar
Wechsler, D. (1955) Manual for Wechsler Memory Scale. New York: Psychological Corporation.Google Scholar
Wing, J. K., Cooper, J. E. & Sartorius, N. (1974) The Measurement and Classification of Psychiatric Symptoms. London: Cambridge University Press.Google Scholar
Wood, P. L., Etienne, P., Lal, S., Gauthier, S., Cajal, S. & Nair, N. P. V. (1982) Reduced lumbar CSF somatostatin levels in Alzheimer's disease. Life Sciences, 31, 20732079.Google Scholar
Yates, C.M., Allison, Y., Simpson, J., Maloney, A. F. J. & Gordon, A. (1979) Dopamine in Alzheimer's disease and senile dementia. Lancet, 2, 851852.Google Scholar
Yates, C.M., Ritchie, I. M. & Simpson, J. (1981) Noradrenaline in Alzheimer-type dementia and Down syndrome. Lancet, 2, 3940.Google Scholar
Yates, C.M., Harmar, A. J., Rosm, R., Sheward, J., Sanchez de Levy, G., Simpson, J., Maloney, A. F. J., Gordon, A. & Fink, G. (1983a) Thyrctropin-rekasing hormone and substance P immunoreactivity in post mortem brain from cases of Alzheimer-type dementia and Down's syndrome. Brain Research, 258, 4552.Google Scholar
Yates, C.M., Simpson, J., Gordon, A., Maloney, A. F. J., Allison, Y., Ritchie, I. M. & Urquhart, A. (1983b) Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer-type dementia and Down's syndrome. Brain Research, 280, 119126.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.