Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T11:11:31.389Z Has data issue: false hasContentIssue false

Adrenergic Receptors in Depression

Effects of Electroconvulsive Therapy

Published online by Cambridge University Press:  29 January 2018

Stephen J. Cooper*
Affiliation:
Department of Therapeutics and Pharmacology, The Queen's University of Belfast, Whitla Medical Building, 97 Lisburn Road, Belfast BT9 7BL
John G. Kelly
Affiliation:
Department of Therapeutics and Pharmacology, The Queen's University of Belfast, Whitla Medical Building, 97 Lisburn Road, Belfast BT9 7BL
David J. King
Affiliation:
Holywell Hospital, Antrim, and Department of Therapeutics and Pharmacology, The Queen's University of Belfast
*
Correspondence

Summary

Platelet α2-and lymphocyte ß2-adrenoceptor densities, plasma noradrenaline and serum Cortisol were measured before, during and one week after a course of EEG-monitored electroconvulsive therapy, in nine depressed patients. A 50% fall in Hamilton Depression Rating scores occurred after a fairly consistent total seizure time, regardless of the amount of ECT given. Platelet α2-adrenoceptor densities showed a statistically significant fall after three ECTs, but were unchanged after the full course of ECT and were independent of clinical change. Lymphocyte ß2-adrenoceptor densities were unaltered. Plasma noradrenaline concentrations were initially high, and fell with ECT in a manner paralleling clinical recovery. Plasma noradrenaline may be a more useful index of central changes during antidepressant treatment than peripheral blood cell receptor densities.

Type
Papers
Copyright
Copyright © 1985 The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akagi, H., Green, A. R. & Heal, D. J. (1981) Repeated electroconvulsive shock attenuates clonidine-induced hypoactivity in both mice and rats. British Journal of Clinical Pharmacology, 11, 230P231P Google Scholar
American Psychiatric Association (1980) DSM III: Diagnostic and Statistical Manual of Mental Disorders. 3rd ed. Washington DC: APA.Google Scholar
Barnes, R. F., Raskind, M., Gumbrecht, G. & Halter, J. B. (1982) The effects of age on the plasma catecholamine response to mental stress in man. Journal of Clinical Endocrinology and Metabolism, 54, 6469.CrossRefGoogle ScholarPubMed
Beckmann, H. & Goodwin, F. K. (1975) Antidepressant response to tricyclics and urinary MHPG in unipolar patients. Archives of General Psychiatry, 32, 1721.CrossRefGoogle ScholarPubMed
Bergstrom, D. A. & Kellar, K. J. (1979) Effect of electroconvulsive shock on monoaminergic receptor binding sites in rat brain. Nature, 278, 464466.CrossRefGoogle ScholarPubMed
Boobis, A. R., Murray, S., Jones, D. H., Reid, J. L. & Davies, D. S. (1980) Urinary conjugates of 4-hydroxy-3-methoxyphenylethyleneglycol do not provide an index of brain amine turnover in man. Clinical Science, 58, 311316.CrossRefGoogle Scholar
Boyum, A. (1967) Isolation of mononuclear cells and granulocytes from human blood. Scandanavian Journal of Clinical and Laboratory Investigation, 97, (suppl), 7789.Google Scholar
Carney, M. W. P., Roth, M. & Garside, R. F. (1965) The diagnosis of depressive syndromes and the prediction of ECT response. British Journal of Psychiatry, 111, 659674.Google Scholar
Charney, D. S., Heninger, G. R., Sternberg, D. E., Hafstad, K. M., Giddings, S. & Landis, H. (1982) Adrenergic receptor sensitivity in depression. Archives of General Psychiatry, 39, 290294.Google Scholar
Charney, D. S., Heninger, G. R., Sternberg, D. E., Redmond, D. E., Leckman, J. F. Maas, J. W. & Roth, R. H. (1981) Presynaptic adrenergic receptor sensitivity in depression. Archives of General Psychiatry, 38, 13341340.CrossRefGoogle ScholarPubMed
Charney, D. S., Heninger, G. R., Sternberg, D. E., (1983) Alpha-2 adrenergic receptor sensitivity and the mechanism of action of antidepressant therapy. British Journal of Psychiatry, 142, 265275.Google Scholar
Checkley, S. A., Slade, A. P., Shur, E. & Dawling, S. (1981a) A pilot study for the mechanism of action of desipramine. British Journal of Psychiatry, 138, 248251.CrossRefGoogle ScholarPubMed
Charney, D. S., Heninger, G. R., Sternberg, D. E., (1981b) Growth hormone and other responses to Clonidine in patients with endogenous depression. British Journal of Psychiatry, 138, 5155.Google Scholar
Coppen, A., Rao, R., Ruthven, C. R. J., Goodwin, B. L. & Sandler, M. (1979) Urinary 4-hydroxy-3-methoxyphenylglycol is not a predictor for clinical response to amitriptyline in depressive illness. Psychopharmacology, 64, 9597.Google Scholar
Daiguji, M., Meltzer, H. Y., Tong, C., U'Prichard, D. C., Young, M. & Kravitz, H. (1981) α2-adrenergic receptors in platelet membranes of depressed patients: no change in number or 3H-yohimbine affinity. Life Sciences, 29, 20592064.CrossRefGoogle ScholarPubMed
Davies, I. B., Sudera, D. & Sever, P. S. (1981) Endogenous agonist regulation of α-adrenoceptors in man. Clinical Science, 61, 207s210s.Google Scholar
Deakin, J. F. W., Owen, F., Cross, A. J. & Dashwood, M. J. (1981) Studies on possible mechanisms of action of electroconvulsive therapy: effects of repeated electrically induced seizures on rat brain receptors for monoamines and other neurotransmitters. Psychopharmacology, 73, 345349.Google Scholar
Elithorn, A., Bridges, P. K., Hodges, J. R. & Jones, M. T. (1969) Adrenocortical responsiveness during courses of electroconvulsive therapy. British Journal of Psychiatry, 115, 575580.Google Scholar
Esler, M., Jackman, G., Leonard, P., Skews, H., Bobik, A. & Korner, P. (1981a) Effect of norepinephrine uptake blockers on norepinephrine kinetics. Clinical Pharmacology and Therapeutics, 29, 1220.Google Scholar
Esler, M. Skews, H., Leonard, P., Jackman, G., Bobik, A. & Korner, P. (1981b) Age-dependence of noradrenaline kinetics in normal subjects. Clinical Science, 60, 217219.CrossRefGoogle ScholarPubMed
Esler, M. Turbott, J., Schwarz, R., Leonard, P., Bobik, A., Skews, H. & Jackman, G. (1982) The peripheral kinetics of norepinephrine in depressive illness. Archives of General Psychiatry, 39, 295300.CrossRefGoogle ScholarPubMed
Extein, I., Tallman, J., Smith, C. C. & Goodwin, F. K. (1979) Changes in lymphocyte beta-adrenergic receptors in depression and mania. Psychiatry Research, 1, 191197.Google Scholar
Fraser, J., Nadeau, J., Robertson, D. & Wood, A. J. J. (1981) Regulation of human leukocyte beta receptors by endogenous catecholamines. Journal of Clinical Investigation, 67, 17771784.Google Scholar
Garcia-Sevilla, J. A., Zis, A. P., Hollingsworth, P. J., Greden, J. F. & Smith, C. B. (1981) Platelet α2-adrenergic receptors in major depressive disorder. Archives of General Psychiatry, 38, 13271333.Google Scholar
Hamilton, M. (1967) Development of a rating scale for primary depressive illness British Journal of Social and Clinical Psychology, 6, 278296.Google Scholar
Harnryd, C., Bjerkenstedt, L., Grimm, V. E. & Sedvall, G. (1979) Reduction of MOPEG levels in cerebrospinal fluid of psychotic women after electroconvulsive treatment. Psychopharmacology, 64, 131134.Google Scholar
Krstulovic, A. M., Dziedzic, S. W. Bertani-Dziedzic, L. & Di Rico, D. E. (1981) Plasma catecholamines in hypertension and phaeochromocytoma determined using ion-pair reversed-phase chromatography with amperometric detection. Journal of Chromatography, 217, 523537.Google Scholar
Leonard, B. E. (1980) Pharmacological properties of some “second generation” antidepressant drugs. Neuropharmacology, 19, 11751183.Google Scholar
Linnoila, M., Karoum, F., Rosenthal, N. & Potter, W. Z. (1983) Electroconvulsive treatment and lithium carbonate. Archives of General Psychiatry, 40, 677680.CrossRefGoogle ScholarPubMed
Louis, W. J. Doyle, A. E. & Anavekar, S. N. (1975) Plasma noradrenaline concentration and blood pressure in essential hypertension, phaeochromocytoma and depression. Clinical Science and Molecular Medicine, 48, 239s242s.Google Scholar
Maas, J. W., Dekirmenjian, H. & Fawcett, J. A. (1971) Catecholamine metabolism, depression and stress. Nature, 230, 330331.Google Scholar
Maas, J. W. Fawcett, J. A. & Dekirmenjian, H. (1972) Catecholamine metabolism, depressive illness and drug response. Archives of General Psychiatry, 26, 252262.CrossRefGoogle ScholarPubMed
Maletzky, B. M. (1978) Seizure duration and clinical effect in electroconvulsive therapy. Comprehensive Psychiatry, 19, 541550.Google Scholar
Medical Research Council Brain Metabousm Unit (1972) Modified amine hypothesis for the aetiology of affective illness. Lancet, ii, 573577.Google Scholar
Pandey, G. N., Dysken, M. W., Garver, D. L. & Davis, J. M. (1979) Beta-adrenergic receptor function in affective illness. American Journal of Psychiatry, 136, 675678.Google Scholar
Pimoule, C., Briley, M. S., Gay, C., Loo, H., Sechter, D., Zarifian, E., Raisman, R. & Langer, S. Z. (1983) 3H-rauwolscine binding in platelets from depressed patients and healthy volunteers. Psychopharmacology, 79, 308312.Google Scholar
Post, R. M., Gordon, E. K., Goodwin, F. K. & Bunney, W. E. (1973) Central norepinephrine metabolism in affective illness; MHPG in the cerebrospinal fluid. Science, 179, 10021003.Google Scholar
Sacchetti, E., Smeraldi, E., Cagnasso, M., Biondi, P. A., & Bellodi, L. (1976) MHPG. amitriptyline and affective disorders: a longitudinal study. International Pharmacopsychiatry, 11, 157162.CrossRefGoogle ScholarPubMed
Sachar, E. J., Halbreich, U., Asnis, G. M., Nathan, R. S., Halpern, F. S. & Ostrow, L. (1981) Paradoxical Cortisol responses to dextroamphetamine in endogenous depression. Archives of General Psychiatry, 38, 11131117.Google Scholar
Schildkraut, J. J. (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. American Journal of Psychiatry, 112, 509522.Google Scholar
Schildkraut, J. J. (1973a) Catecholamine metabolism and affective disorders: studies of MHPG excretion. Frontiers in Catecholamine Research, 11651171.Google Scholar
Schildkraut, J. J. (1973b) Norepinephrine metabolites as biochemical criteria for classifying depressive disorders and predicting responses to treatment: preliminary findings. American Journal of Psychiatry, 130, 695698.CrossRefGoogle ScholarPubMed
Segal, D. S., Kuczenski, R. & Mandell, A. R. (1974) Theoretical implications of drug induced adaptive regulation for a biogenic amine hypothesis of affective disorder. Biological Psychiatry, 9, 147159.Google Scholar
Shaw, D. M., O'Keeffe, R., Macsweeney, D. A., Brooksbank, B. W. L., Noguera, R. & Coppen, A. (1973) 3-methoxy-4-hydroxyphenylglycol in depression. Psychological Medicine, 3, 333336.Google Scholar
Siever, L. J., Pickar, D., Lake, C. R., Cohen, R. M., Uhde, T. W. & Murphy, D. L. (1983) Extreme elevations in plasma norepinephrine associated with decreased α-adrenergic responsitivity in major depressive disorder: two case reports. Journal of Clinical Psychopharmacology, 3, 3941.Google Scholar
Slade, A. P. & Checkley, S. A. (1980) A neuroendocrine study of the mechanism of action of ECT. British Journal of Psychiatry, 137, 217221.Google Scholar
Sulser, F., Vetulani, J. & Mobley, P. L. (1978) Mode of action of antidepressant drugs. Biochemical Pharmacology, 27, 257261.Google Scholar
Tepper, J. M., Nakamura, S., Spanis, C. W., Squire, L. R., Younger, S. J. & Groves, P. M. (1982) Subsensitivity of catecholaminergic neurons to direct acting agonists after single or repeated electroconvulsive shock. Biological Psychiatry, 17, 10591070.Google Scholar
Thompson, C., Checkley, S. A., Corn, T., Franey, C. & Arendt, J. (1983) Down-regulation at pineal β-adrenoceptors in depressed patients treated with desipramine? Lancet, i, 1101.Google Scholar
Vetth, R. C., Bielski, R. J., Bloom, V., Fawcett, J. A. Narasimhachari, N. & Friedel, R. O. (1983) Urinary MHPG excretion and treatment with desipramine or amitriptyline: prediction of response, effect of treatment and methodologic hazards. Journal of Clinical Psychopharmacology, 3, 1827.Google Scholar
Wilk, S., Shopsin, B., Gershon, S. & Suhl, M. (1972) Cerebrospinal fluid levels of MHPG in affective disorders. Nature, 235, 440441.CrossRefGoogle ScholarPubMed
Wood, K. & Coppen, A. (1982) α2-adrenergic receptors in depression. Lancet, i, 11211122.Google Scholar
Wood, K. & Coppen, A. (1983) Prophylactic lithium treatment of patients with affective disorders is associated with decreased platelet 3H-dihydroergocryptine binding. Journal of Affective Disorders, 5, 253258.Google Scholar
Wyatt, R. J., Portnoy, B., Kupfer, D. J., Snyder, F. & Engelman, K. (1971) Resting plasma catecholamine concentrations in patients with depression and anxiety. Archives of General Psychiatry, 24, 6570.Google Scholar
Ziegler, M. G., Lake, C. R. & Kopin, I. J. (1976) Plasma noradrenaline increases with age. Nature, 261, 333335.Google Scholar
Ziegler, M. G., Lake, C. R. Wood, J. H., Brooks, B. R. & Ebert, M. H. (1977) Relationship between norepinephrine in blood and cerebrospinal fluid in the presence of a blood-cerebro-spinal fluid barrier for norepinephrine. Journal of Neurochemistry, 28, 677679.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.