Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T01:06:46.937Z Has data issue: false hasContentIssue false

The Dopamine Hypothesis Survives, but There Must Be a Way Ahead

Published online by Cambridge University Press:  02 January 2018

T. J. Crow*
Affiliation:
Clinical Research Centre, Northwick Park Hospital, Watford Road, Harrow, Middlesex HA1 3UJ

Extract

Karl Popper has taught us that no hypothesis can be regarded as proved-merely as having survived the most stringent tests which have so far been devised. Dinan makes a further attempt to overthrow the dopamine hypothesis of the mechanism of the antipsychotic effect, and provides an alternative suggestion. As one time critic and later advocate of the theory, I think he underestimates its explanatory power and capacity for survival. I doubt that his alternative yet poses a serious challenge. I propose below a second (and perhaps more idiosyncratic) alternative. I do not claim it yet has the explanatory power of the dopamine theory, but I think it generates some new approaches.

Type
Papers
Copyright
Copyright © Royal College of Psychiatrists, 1987 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bogerts, B., Meertz, E. & Schonfeldt-Bausch, R. (1983) Basal ganglia and limbic system pathology in schizophrenia. Archives of General Psychiatry, 42. 784 791.Google Scholar
Brown, R., Colter, N. Corsellis, J. A. N., Crow, T. J., Frith, C. D., Jagoe, J. R., Johnstone, E. C. & Marsh, L. (1986) Post-mortem evidence of structural brain changes in schizophrenia. Archives of General Psychiatry, 43, 3642.Google Scholar
Carlsson, A. & Lindqvist, M. (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytryramine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol. 20, 140144.Google Scholar
Connell, P. H. (1958) Amphetamine Psychosis. Oxford University Press.Google Scholar
Crawley, J. C. W., Crow, T. J., Johnstone, E. C., Oldland, S. R. D., Owen, F., Owens, D. G. C., Poulter, M., Smith, T., Veall, N. & Zanelli, G. D. (1986) Dopamine D2 receptors in schizophrenia studied in vivo. The Lancet, ii, 224.Google Scholar
Cross, A. J., Crow, T. J. & Owen, F. (1981) 3H-flupenthixol binding in the brains of schizophrenics: evidence for a selective increase of dopamine D2 receptors. Psychopharmacology, 74, 122124.Google Scholar
Crow, T. J. (1972) A map of the rat mesencephalon for electrical self-stimulation. Brain Research, 36, 265273.CrossRefGoogle ScholarPubMed
Crow, T. J. (1973) Catecholamine containing neurones and electrical selfstimulation: II. A theoretical interpretation and some psychiatric implications. Psychological Medicine, 3, 6673.Google Scholar
Crow, T. J. (1978) Viral causes of psychiatric disease. Postgraduate Medical Journal, 54, 763767.Google Scholar
Crow, T. J. (1983) Is schizophrenia an infectious disease? The Lancet, i, 173175.Google Scholar
Crow, T. J. (1984) A re-evaluation of the viral hypothesis: is psychosis the result of retroviral integration at a site close to the cerebral dominance gene? British Journal of Psychiatry, 145, 243254.Google Scholar
Crow, T. J. & Gillbe, L. (1974) Brain dopamine and behaviour: critical analysis of the relationship between dopamine antagonism and the therapeutic efficacy of neuroleptic drugs. Journal of Psychiatry Research, 11, 163172.Google Scholar
Crow, T. J. Cross, A. J., Johnson, J. A. et al (1984) Catecholamines and schizophrenia: an assessment of the evidence. In: Catecholamines, Neuropharmacology, and Central Nervous System: Therapeutic Aspects (eds E. Usdin, A. Carlsson, A. Dahlstrom et al). New York: Alan R. Liss.Google Scholar
Crow, T. J. & Deakin, J. F. W. (1985) Neurotransmitters, behaviour and mental disorder. In: Handbook of Psychiatry (ed. M. Shepherd), vol. 5. Cambridge: Cambridge University Press.Google Scholar
Crow, T. J. & Done, D. J. (1986) Age of onset of schizophrenia in siblings: a test of the contagion hypothesis. Psychiatry Research, 18, 107117.Google Scholar
Csernansky, J. G., Holman, C. A., Bonnet, K. A., Grabowsky, K., King, R. & Hollister, L. E. (1983) Dopaminergic supersensitivity at distant sites following induced epileptic foci. Life Sciences, 32, 385390.Google Scholar
Csernansky, J. G., Holman, C. A., Bonnet, K. A., Grabowsky, K., King, R. & Hollister, L. E. Csernansky, C. A., Bonnet, K. A. & Hollister, L. E. (1983) Dopaminergic supersensitivity follows ferric chloride-induced limbic seizures. Biological Psychiatry, 20, 723733.Google Scholar
Deniker, P. (1960) Experimental neurological syndromes and the new drug therapies in psychiatry. Compr. Psychiatry, 1, 92102.Google Scholar
Ehringer, H. & Hornykiewicz, O. (1960) Verteilung von Noradrenalin und Dopamin (3-hydroxytyramin) im Gehirn des Menchen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin. Wochenschr., 38, 12361239.Google Scholar
Farde, L., Hall, H., Ehrin, E. & Sedvall, G. (1986) Quantitative analysis of D2 dopamine receptors in living human brain by PET. Science, 231, 258261.Google Scholar
Hare, E. H. (1979) Schizophrenia as an infectious disease. British Journal of Psychiatry, 135, 468470.Google Scholar
Johnstone, E. C., Crow, T. J., Frith, C. D. et al (1978) Mechanism of the antipsychotic effect in the treatment of acute schizophrenia. The Lancet, i, 848851.Google Scholar
Lee, T., Seeman, P., Tourtellotte, W. W., Farley, I. J. & Hornykiewicz, O. (1978) Binding of 3H-neuroleptics and 3H-apomorphine in schizophrenic brain. Nature (London), 274, 897900.Google Scholar
Ljungberg, T. & Ungerstedt, U. (1976) Sensory inattention produced by 6-hydroxydopamine-induced degeneration of ascending dopamine neurons in the brain. Experimental Neurology, 53, 585600.Google Scholar
Mackay, A. V. P., Iversen, L. L., Rossor, M., Spokes, E., Arregui, A., Creese, I. & Snyder, S. H. (1982) Increased brain dopamine and dopamine receptors in schizophrenia. Archives of General Psychiatry, 39, 991997.Google Scholar
Marshall, J. F., Richardson, J. S. & Teitelbaum, P. (1974) Nigrostriatal bundle damage and the lateral hypothalamic syndrome. J. Comp. Physiol. Psychol., 87, 808830.Google Scholar
Miller, R. J. & Hiley, C. R. (1974) Antimuscarinic properties of neuroleptics and drug induced Parkinsonism. Nature, 248, 596597.Google Scholar
Miller, R. J. & Hiley, C. R. Horn, A. S. & Iversen, L. L. (1974) The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3’, 5′-monophosphate production in neostriatum and limbic forebrain. Molecular Pharmacology, 10, 759766.Google Scholar
Muller, P. & Seeman, P. (1974) Relation between cataleptic and anti-turning actions and the role of the cholinergic system. J. Pharm. Pharmacol., 26, 981984.Google Scholar
Olds, J. & Travis, R. P. (1960) Effect of chlorpromazine, meprobamate, pentobarbital and morphine on self-stimulation. J. Pharmacol. Exp. Ther., 128, 397404.Google Scholar
Owen, F., Cross, A. J., Crow, T. J., Longden, A., Poultbr, M. & Riley, G. J. (1978) Increased dopamine receptor sensitivity in schizophrenia. The Lancet, ii, 223226.Google Scholar
Patou, G., Crow, T. J. & Taylor, G. R. (1986) The effects of psychotropic drugs on synthesis of DNA and the infectivity of herpes simplex virus. Biological Psychiatry, 21, 12211225.Google Scholar
Pycock, C. J., Kerwin, R. W. & Carter, C. J. (1980) Effect of lesions of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature, 286, 7477.CrossRefGoogle ScholarPubMed
Randrup, A. & Munkvad, I. (1965) Special antagonism of amphetamine-induced abnormal behaviour: inhibition of stereotyped activity with increase of some normal activities. Psychopharmacotogia, 7, 416422.Google Scholar
Randrup, A. & Munkvad, I. (1966) On the role of dopamine in the amphetamine excitatory response. Nature, 211, 540.Google Scholar
Randrup, A. & Munkvad, I. (1967) Stereotyped activities produced by amphetamine in several animal species and man. Psycho-pharmacologia, 11, 300310.CrossRefGoogle ScholarPubMed
Randrup, A. & Munkvad, I. (1972) Evidence indicating an association between schizophrenia and dopaminergic hyperactivity in the brain. Orthomol. Psychiatry, 1, 27.Google Scholar
Seeman, P., Lee, T., Chau-Wong, M. & Wong, K. (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature, 261, 717719.Google Scholar
Teich, N. (1982) Endogenous viruses. In: RNA Tumour Viruses (eds R. N. Teich, H. Various & J. Coffin), 2nd edn. New York: Cold Spring Harbor.Google Scholar
Torrey, E. F. & Peterson, M. R. (1976) The viral hypothesis of schizophrenia. Schizophrenia Bulletin, 2, 136146.Google Scholar
Wunderlich, V. & Sydow, G. (1980) Lytic action of neuroleptic drugs on retroviruses in vitro . Eur. J. Cancer, 16, 11271132.Google Scholar
Wunderlich, V. & Sydow, G. Fey, F. & Sydow, G. (1980) Antiviral effect of haloperidol on Rauscher murine leukemia virus. Arch. Geschwulstforsch., 50, 758762.Google Scholar
Wunderlich, V. & Sydow, G. Fey, F. & Sydow, G. & Zotter, S. (1982) Aborgation of infectivity of mouse mammary tumor virus by reserpne. Experimental Pathology, 21, 5961.Google Scholar
Wong, D. F., Wagner, H. N., Tune, L. E., Dannals, R. F., Pearlson, G. D., Links, J. M., Tamminga, C. A., Broussole, E. P., Ravert, H. T., Wilson, A. A., Thomas Toung, J. K., Malat, J., Williams, J. A., O'Tuama, L. A., Snyder, S. H., Kuhar, M. J. & Gjedde, A. (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science, 234, 11581563.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.