Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T18:46:07.276Z Has data issue: false hasContentIssue false

CSF Neuropeptides in Euthymic Bipolar Patients and Controls

Published online by Cambridge University Press:  02 January 2018

Wade H. Berrettini*
Affiliation:
Intramural Research Program
John I. Nurnberger Jr.
Affiliation:
Intramural Research Program
Robert L. Zerbe
Affiliation:
Lilly Research Centre, Ltd, Surrey, UK
Philip W. Gold
Affiliation:
IRP NIMH, National Institute of Health, Bethesda
George P. Chrousos
Affiliation:
Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda
Thomas Tomai
Affiliation:
IRP NIMH, National Institute of Health, Bethesda
*
National Institute of Mental Health, Bethesda, Maryland 20205, USA

Abstract

Levels of vasopressin, somatostatin, neurotensin, vasoactive intestinal peptide, corticotrophin-releasing factor and adrenocorticotrophin in CSF were determined in lithium-treated and unmedicated euthymic bipolar patients and controls, in a search for a trait marker in affective disorder. No group differences in levels of these peptides were found. Highly significant positive correlations were found among these peptides (with the exception of neurotensin), suggesting that their presence in CSF is functionally significant, as opposed to the result of random diffusion from the interstitial space of the brain.

Type
Research Article
Copyright
Copyright © 1987 The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Axelrod, J. & Reisine, T. D. (1984) Stress hormones: their interaction and regulation. Science, 224, 452459.Google Scholar
Berrettini, W. H., Goldin, L. R., Nurnberger, J. I. Jr, & Gershon, E. S. (1984) Genetic factors in affective illness. Journal of Psychiatric Research, 18, 329350.Google Scholar
Gershon, E. S., Nurnberger, J. I. Jr., Gold, P. W., Chretien, M., Chrousos, G. P., Chan, J. S. D., Goldin, L. R. & Gershon, E. S. (1985a) Neuropeptides in human cerebrospinal fluid. Life Sciences, 37, 12651270.Google Scholar
Gershon, E. S., Nurnberger, , Hotvedt, P., Simmons-Alling, S. & Gershon, E. S. (1985b) VIP and bipolar affective illness: evidence for an effect of lithium. Journal of Affective Disorders, 8, 5563.Google Scholar
Davis, B. M., Davis, K. L., Mohs, R. C., Mathe, A. A., Vale, W. & Krieger, D. (1984) Abstracts of the Annual Meeting, American College of Neuropsychopharmacology, San Juan, Puerto Rico, 10–14, December, p. 26.Google Scholar
Forrest, J. N. (1979) Lithium-induced polyuria: cellular mechanisms and response to diuretics. In Lithium: Controversies and Unresolved Issues (eds T. B. Cooper, S. Gershon, N. S. Kline & M. Schou). Amsterdam: Excerpta Medica.Google Scholar
Gerner, R. H. & Yamada, T. (1982) Altered neuropeptide concentrations in CSF of psychiatric patients. Brain Research, 238, 298302.Google Scholar
Gjerris, A., Rafaelsen, O. J., Vendsborg, P., Fahrenkrug, J. & Rehfeld, J. F. (1984) VIP decreased in CSF in atypical depression. Journal of Affective Disorders, 7, 325337.CrossRefGoogle ScholarPubMed
Gjerris, A., Hammer, M., Vendsborg, P., Christensen, N. J. & Rafaelsen, O. J. (1985) Cerebrospinal fluid vasopressin changes in depression. British Journal of Psychiatry, 147, 696701.Google Scholar
Gold, P. W., Chrousos, G., Kellner, C., Post, R., Roy, A., Avgerinos, P., Schulte, H., Oldfield, E. & Loriaux, D. L. (1984) Psychiatric implications of basic and clinical studies with corticotropin releasing factor. American Journal of Psychiatry, 141, 619627.Google Scholar
Gold, P. W., Ballenger, J. C., Robertson, G. L., Robinow, D. R., Goodwin, F. K. & Post, R. M. (in press) Plasma and CSF arginine vasopressin in primary affective disorder. American Journal of Psychiatry.Google Scholar
Greden, J. F., Gardner, R., King, D., Grunhaus, L., Carroll, B. J. & Kraunfol, Z. (1983) Dexamethasone suppression tests in antidepressant treatment of melancholia. Archives of General Psychiatry, 40, 493500.Google Scholar
Greenwood, F. C., Hunter, W. M. & Glover, J. S. (1963) The preparation of 131I-labeled human growth hormone of high specific radioactivity. Biochemical Journal, 89, 114123.Google Scholar
Hosobuchi, Y. & Bloom, F. E. (1983) Analgesia induced by brain stimulation in man: its effect on release of beta-endorphin and ACTH into CSF. In Neurobiology of Cerebrospinal Fluid (ed. J. H. Wood) vol. 2. New York: Plenum Press.Google Scholar
Jackson, I. (1981) Neural peptides in the CSF. Advances in Biochemical Psychopharmacology, 32, 337355.Google Scholar
Kaji, H., Chihara, K., Minamitani, N., Kodarna, H., Yaraihara, N. & Fajita, T. (1983) Release of VIP into CSF of the fourth ventricle of the rat: involvement of a cholinergic mechanism. Brian Research, 269, 303310.Google Scholar
Knigge, K. M., Bennett-Clarke, C. & Burchanowski, B. (1980) Relationships of some releasing-hormone-producing neuron systems to the ventricles of the brain. In Endocrine Functions of the Brain (ed. M. Motta). New York: Raven Press.Google Scholar
Koob, G. F. & Britton, K. T. (1984) Stress produces an increase in CRF in rat CSF. Abstracts of the Annual Meeting of the American College of Neuropsychopharmacology, San Juan, Puerto Rico.Google Scholar
Lundberg, J. M., Anggard, A., Fahrenkrug, J., Hokfelt, T. & MUTT, V. (1980) VIP in cholinergic neurons of exocrine glands; functional significance of coexisting neurotransmitters for vasodilation and secretion. Proceedings of the National Academy of Sciences of the United States of America, 77, 16511655.Google Scholar
Nadi, N. S., Nurnberger, J. I. Jr. & Gershon, E. S. (1984) Muscarinic cholinergic receptors on skin fibroblasts in familial affective disorders. New England Journal of Medicine, 311, 252–230.Google Scholar
Nemeroff, C. B., Widerlov, E., Bissette, G., Walleus, H., Karlsson, L, Eklund, K., Kilts, C. D., Loosen, P. T. and Vale, W. (1984) Elevated concentrations of CSF CRF-like immunoreactivity in depressed patients. Science, 266, 13421344.CrossRefGoogle Scholar
Okuma, T., Kishomoto, A., & Inoue, K. (1973) Anti-manic and prophylactic effects of carbamazepine on manic-depressive psychosis. Folia Psychiatrica et Neurologica Japonica, 27, 283297.Google Scholar
Orth, D. N. (1979) Adrenocorticotropin hormone. In Methods of Hormone Radioimmunoassay (ed. B. M. Jaffe & H. R. Beheman). New York: Academic Press.Google Scholar
Patel, Y. C. & Reichlin, S. (1979) Somatostatin. In: Methods of Hormone Radioimmunoassay (eds B. M. Jaffe & H. R. Beheman). New York: Academic Press.Google Scholar
Pollay, M. (1979) Recent developments in CSF physiology. Contemporary Neurosurgery, 1, 16.Google Scholar
Post, R. M., Gold, P. W., Rubinow, D. R., Ballenger, J. C., Bunney, W. E. Jr. & Goodwin, F. K. (1982) Peptides in CSF of neuropsychiatric patients: an approach to CNS peptide function. Life Sciences, 31, 115.Google Scholar
Bunney, , Uhde, T. W., Ballenger, J. C. & Squillace, K. M. (1983) Prophylactic efficacy of carbamazepine in manic-depressive illness. American Journal of Psychiatry, 140, 16021604.Google Scholar
Reider, R. O. & Gershon, E. S. (1978). Genetic strategies in biological psychiatry. Archives of General Psychiatry, 35:866873.Google Scholar
Roy, A., Pickar, D., Paul, S., Doran, A., Chrousos, G. & Gold, P. W., (in press). CSF CRH in depressed patients and normal controls. American Journal of Psychiatry.Google Scholar
Rubinow, D. R., Gold, P. W., Post, R. M., Ballenger, J. C., Cowdry, R., Bollinger, J. & Reichlin, S. (1983) CSF somatostatin in affective illness. Archives General of Psychiatry, 40, 409412.Google Scholar
Rubinow, D. R., Post, R. M., Gold, P. W., Ballenger, J. C. & Reichlin, S. (1985) Effects of carbamazepine on CSF somatostatin. Psychopharmacology 85, 210213.Google Scholar
Sachar, E. J., Hellman, L., Roffwarg, H. P., Halpern, F. S., Fukushima, K. K. & Gallagher, T. F. (1973). Disrupted 24 hour patterns of cortisol secretion in psychotic depression. Archives General of Psychiatry, 28, 1924.Google Scholar
Sitaram, N., Nurnberger, J. I. Jr., Gershon, E. S., & Gillin, J. C. (1980) Faster cholinergic REM sleep induction in euthymic patients with primary affective illness. Science, 208, 200202.Google Scholar
Wood, J. H. (1982) Neuroendocrinology of CSF: peptides, steroids and other hormones. Neurosurgery, 11, 293305.Google Scholar
Yau, W. M., Verdun, P. R. & Youthe, M. L. (1983). Neurotensin: a modulator of enteric cholinergic neurons in the guinea pig small intestine. European Journal of Pharmacology, 95, 253258.Google Scholar
Zerbe, R. L., Feverstein, G., Meyer, D. K. & Kopin, I. J. (1982) Cardiovascular, sympathetic and renin-angiotensin system responses to hemorrhage in vasopressin-deficient rats. Endocrinology, 111, 608613.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.