Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T11:34:41.519Z Has data issue: false hasContentIssue false

Caudate Nucleus Morphology in Tardive Dyskinesia

Published online by Cambridge University Press:  02 January 2018

Keith W. Brown*
Affiliation:
Central Scotland Healthcare Trust, Bellsdyke Hospital, Larbert
Thomas White
Affiliation:
State Hospital, Lanark
J. M. Wardlaw
Affiliation:
Department of Clinical Neurosciences, Western General Hospital, Edinburgh
Nicholas Walker
Affiliation:
Leverndale Hospital, Glasgow
D. Foley
Affiliation:
Department of Neuroradiology, Institute of Neurological Sciences, Southern General Hospital, Glasgow
*
Dr Keith W. Brown, Consultant Psychiatrist, Central Scotland Healthcare Trust, Bellsdyke Hospital, Larbert FK5 4SF

Abstract

Objective

The objective of this project was to test whether there are differences in the size of the caudate nucleus in schizophrenic in-patients with and without tardive dyskinesia.

Method

The study was cross-sectional in design, examining group differences between institutionalised schizophrenic patients with and without tardive dyskinesia, using non-enhanced computerised tomography scans of the brain. The group comprised 15 schizophrenic patients with persistent tardive dyskinesia and 21 in-patient schizophrenic controls who were group-matched for demographic variables.

Results

The dyskinetic subjects had a significantly larger left caudate nucleus and tended to have a larger right caudate nucleus than the controls. There were no differences between the groups on any of the measures of cerebral atrophy.

Conclusions

The findings can be understood within the context of models of neostriatal function. It is possible that a larger caudate nucleus could be used to identify patients at risk of developing tardive dyskinesia.

Type
Papers
Copyright
Copyright © Royal College of Psychiatrists, 1996 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albus, M., Naber, D., Muller-Spalm, F., et al (1985) Tardive dyskinesia: relation to CT, endocrine and psychopathological variables. Biological Psychiatry, 20, 10821089.CrossRefGoogle Scholar
American Psychiatric Association (1987) Diagnostic and Statistical Manual of Mental Disorders (3rd edn, revised) (DSM–III–R). Washington, DC: APA.Google Scholar
Bannon, M. J. & Roth, R. H. (1983) Pharmacology of mesocortical dopamine neurons. Pharmacological Review, 35, 6368.Google ScholarPubMed
Barnes, T. R. E., Cidger, T., Traner, T., et al (1980) Reclassification of the tardive dyskinesia syndrome. Biochemical Psychopharmacology, 24, 565568.Google ScholarPubMed
Bartels, M. & Themelis, J. (1983) Computerised tomography in tardive dyskinesia. Archiv für Psychiatrische Nervenkrankheiten, 233, 371379.CrossRefGoogle ScholarPubMed
Bland, M. J. & Altman, D. G. (1986) Statistical methods for assessing agreement between methods of clinical measurement. Lancet, i, 307310.CrossRefGoogle Scholar
Brier, A., Buchanan, R. W., Elkashef, A., et al (1992) Brain morphology and schizophrenia: a magnetic resonance imaging study of limbic, prefrontal cortex and caudate structures. Archives of General Psychiatry, 49, 921927.CrossRefGoogle Scholar
Brown, W. & White, T. (1991) The association among negative symptoms, movement disorders and frontal lobe psychological deficits in schizophrenic patients. Biological Psychiatry, 30, 11821190.CrossRefGoogle ScholarPubMed
Buchanan, R. W., Breier, A., Kirkpatrick, B., et al (1993) Structural abnormalities in deficit and nondeficit schizophrenia. American Journal of Psychiatry, 150, 5965.Google ScholarPubMed
Cadet, J. L., Lohr, J. B. & Jeste, D. V. (1986) Free radicals and tardive dyskinesia. Trends in Neuroscience, 9, 107108.CrossRefGoogle Scholar
Chakos, M. H., Lieberman, J. A., Bilder, R. M., et al (1994) Increase in caudate nuclei volumes of first-episode schizophrenic patients taking anti-psychotic drugs. American Journal of Psychiatry, 151, 14301436.Google Scholar
Davis, J. M. (1976) Comparative dose and cost of antipsychotic medication. Archives of General Psychiatry, 33, 858861.CrossRefGoogle ScholarPubMed
DeLisi, L. E., Hogg, A. L., Schwartz, J. E., et al (1991) Brain morphology in first episode schizophrenic-like psychotic patients: a quantitative magnetic resonance imaging study. Biological Psychiatry, 29, 159175.CrossRefGoogle ScholarPubMed
Elkashef, A. M., Buchanan, R. W., Gellad, F., et al (1994) Basal ganglia pathology in schizophrenia and tardive dyskinesia. American Journal of Psychiatry, 151, 752754.Google ScholarPubMed
Heckers, S., Heinsen, H., Heinsen, Y., et al (1991) White matter and basal ganglia in schizophrenia: a volumetric post-mortem study. Biological Psychiatry, 29, 556566.CrossRefGoogle Scholar
Hoffman, W. F. & Casey, D. E. (1991) CT scan evaluation of patients with tardive dyskinesia. Schizophrenia Research, 5, 112.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979) Synaptic density in human frontal cortex – developmental changes and effects of aging. Brain Research, 163, 195205.Google ScholarPubMed
Jernigan, T., Zisook, S., Heatdu, R. K., et al (1991) Magnetic resonance imaging abnormalities in lenticular nuclear and cerebral cortex in schizophrenia. Archives of General Psychiatry, 48, 881887.CrossRefGoogle Scholar
Jeste, D. V., Wagner, R. L., Weinberger, D. R., et al (1980a) Evaluation of CT scans in TD. American Journal of Psychiatry, 137, 247248.Google Scholar
Jeste, D. V., Weinberger, D. R., Zalcman, S., et al (1980b) Computerised tomography in TD. British Journal of Psychiatry, 136, 606608.CrossRefGoogle Scholar
Jeste, D. V., Kleiniman, J. E., Potkin, S. G., et al (1982) Ex uno multi: subtyping the schizophrenic syndrome. Biological Psychiatry, 17, 199222.Google ScholarPubMed
Jobst, K. A., Smith, A. D., Szatmari, M., et al (1992) Detection in life of confirmed Alzheimer's disease using a simple measurement of medial temporal lobe atrophy by computed tomography. Lancet, 340, 7983.Google ScholarPubMed
Johnstone, E. C., Owens, D. G. C., Byader, G. M., et al (1989) The spectrum of structural brain changes in schizophrenia: age of onset as a predictor of cognitive and clinical impairments. Psychological Medicine, 19, 91103.CrossRefGoogle ScholarPubMed
Kaufman, C. A., Jeste, D. V., Shelton, R. C., et al (1986) Noradrenergic and neuroradiological abnormalities in TD. Biological Psychiatry, 21, 799812.CrossRefGoogle Scholar
Mion, C. C., Andreasen, N. C., Arndt, S., et al (1991) MRI abnormalities in tardive dyskinesia. Psychological Research and Neuroimaging, 40, 157166.CrossRefGoogle ScholarPubMed
National Institute of Mental Health (1976) Abnormal Involuntary Movements Scale. In Early Clinical Drug Evaluation Unit Assessment Manual (ed. Guy, W.), pp. 534537. Rockville: US Department of Health and Human Resources.Google Scholar
Schooler, N. R. & Kane, J. M. (1982) Research diagnoses for tardive dyskinesia (letter). Archives of General Psychiatry, 39, 486487.Google Scholar
Swayze, V. W., Andreasen, N. C., Alliger, R. J., et al (1992) Subcortical and temporal structures in affective disorder and schizophrenia: an MRI study. Biological Psychiatry, 31, 221240.CrossRefGoogle Scholar
Wardlaw, J. M. & Sellar, R. J. (1991) Early caudate nucleus atrophy in Huntington's disease: does it correlate with presenting symptoms? Neurology, 33 (suppl.), 238240.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.