Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T21:28:47.799Z Has data issue: false hasContentIssue false

Can Autoimmune Mechanisms Account for the Genetic Predisposition to Schizophrenia?

Published online by Cambridge University Press:  02 January 2018

John Knight*
Affiliation:
Department of Psychological Medicine, University of Otago Medical School, PO Box 913, Dunedin, New Zealand
Allison Knight
Affiliation:
Department of Psychological Medicine, University of Otago Medical School, PO Box 913, Dunedin, New Zealand
Gabor Ungvari
Affiliation:
Department of Psychological Medicine, University of Otago Medical School, PO Box 913, Dunedin, New Zealand
*
Correspondence

Abstract

Applications of molecular genetic techniques to schizophrenia have shown great initial promise but have then proved disappointing. In order to maximise chances of elucidating the genetic mechanism underlying schizophrenia, diverse strategies and diverse perspectives must be adopted. Most studies begin with the premise that, although schizophrenia may be a heterogeneous collection of diseases, some subtypes will be primarily single-gene disorders. We are concerned that this single-gene hypothesis may be incorrect. Schizophrenia research may benefit from application of knowledge from other disciplines and from other diseases which, in terms of epidemiology and apparent genetic mechanisms, bear some resemblance to schizophrenia.

Type
Point of View
Copyright
Copyright © Royal College of Psychiatrists, 1992 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D. D., Knight, A., Knight, J. G., et al (1987) Graves' disease: a paradigm for autoimmunity. In Thyroid Autoimmunity (eds Pinchera, A., Fenzi, G. F., Ingbar, S. H., et al), pp. 110. New York: Plenum.Google Scholar
Alper, C. A., Awdeh, Z. L., Raum, D. D., et al (1984) Complement genes of the human major histocompatibility complex: implications for linkage disequilibrium and disease associations. In Immunogenetics (ed. Panayi, D.), pp. 5091. London: Butterworths.Google Scholar
Barnett, A. H., Eff, C., Leslie, R. D. G., et al (1981) Diabetes in identical twins. Diabetologia, 20, 8793.Google Scholar
Bartels, E. D. (1941) Heredity in Graves' Disease. Munksgaard, Copenhagen.Google Scholar
Bisno, A. L. (1985) Rheumatic fever. In Cecil's Textbook of Medicine (eds Wyngaarden, J. B. & Smith, L. H. Jr). Philadelphia: Saunders.Google Scholar
Block, S. R., Winfield, J. B., Lockshin, M. D., et al (1975) Studies of twins with systemic lupus erythematosus. American Journal of Medicine, 59, 533552.CrossRefGoogle ScholarPubMed
Brandrup, F. (1984) Psoriasis in first-degree relatives of psoriatic twins. Acta Dermatologica Venereologica, 64, 220226.CrossRefGoogle ScholarPubMed
Buchmeier, M. J., Welsch, R. M., Dutko, F. J., et al (1980) The virology and immuno-biology of lymphocytic choriomeningitis virus infection. Advances in Immunology, 30, 275331.Google Scholar
Crow, T. J. & Done, D. J. (1986) Age of onset of schizophrenia in siblings: a test of the contagion hypothesis. Psychiatry Research, 18, 107117.Google Scholar
Crow, T. J., DeLisi, L. E. & Johnstone, E. C. (1989) Concordance by sex in sibling pairs with schizophrenia is paternally inherited. British Journal of Psychiatry, 155, 9297.Google Scholar
Curtis, D. & Gurling, H. (1990) Unsound methodology in investigating a pseudoautosomal locus in schizophrenia. British Journal of Psychatry, 156, 415416.Google Scholar
Davison, K. (1987) Organic and toxic concomitants of schizophrenia. In Biological Perspectives of Schizophrenia (eds Helmchen, H. & Henn, F. A.), pp. 139160. Chichester: Wiley.Google Scholar
DeLisi, L. E., Weber, R. J. & Pert, C. B. (1985) Are there antibodies against brain in sera from schizophenic patients? Review and prospectus. Biological Psychiatry, 20, 110115.Google Scholar
Duke-Elder, S. & Perkins, E. S. (1966) System of Ophthalmology. Vol. IX. Diseases of the Uveal Tract, pp. 558593. London: Henry Kimpton.Google Scholar
Elston, R. C., Kringlen, E. & Namboodiri, K. K. (1973) Possible linkage relationships between certain blood groups and schizophrenia or other psychoses. Behavioural Genetics, 3, 101106.Google Scholar
Field, L. L. (1989) Genes predisposing to IDDM in multiplex families. Genetic Epidemiology, 6, 101106.Google Scholar
Field, L. L., Dizier, M. H., Anderson, C. E., et al (1986) HLA-dependent Gm effects in insulin-dependent diabetes: evidence from pairs of affected siblings. American Journal of Human Genetics, 39, 640647.Google ScholarPubMed
Finney, G. O. H. (1989) Juvenile onset diabetes and schizophrenia? Lancet, ii, 12141215.Google Scholar
Ganguli, R. & Rabin, B. S. (1989) Increased serum interleukin 2 receptor concentration in schizophrenic and brain-damaged subjects. Archives of General Psychiatry, 46, 292.CrossRefGoogle ScholarPubMed
Gottesman, I. I. & Bertelsen, A. (1989) Confirming unexpressed genotypes for schizophrenia. Archives of General Psychiatry, 46, 867872.CrossRefGoogle ScholarPubMed
Haile, R. W., Hodge, S. E. & Iselius, L. (1983) Genetic susceptibility to multiple sclerosis: a review. International Journal of Epidemiology, 12, 816.CrossRefGoogle ScholarPubMed
Haldane, J. B. S. (1941) Relative importance of some principal and modifying genes in determining some human diseases. Journal of Genetics, 41, 149157.CrossRefGoogle Scholar
Heath, R. G., McCarron, K. L. & O'Neill, C. E. (1989) Antiseptal brain antibody in IgG of schizophrenic patients. Biological Psychiatry, 25, 725733.Google Scholar
Himmelhoch, J., Pincus, J., Tucker, G., et al (1970) Sub-acute encephalitis: behavioural and neurological aspects. British Journal of Psychiatry, 116, 531538.CrossRefGoogle ScholarPubMed
Hood, L., Kronenberg, M. & Hunkapiller, T. (1985) T cell antigen receptors and the immunoglobulin supergene family. Cell, 40, 225229.CrossRefGoogle ScholarPubMed
Husby, G., Van de Run, I., Zabriskie, J. B., et al (1976) Antibodies reacting with cytoplasm of subthalamic and caudate nuclei neurons in chorea and acute rheumatic fever. Journal of Experimental Medicine, 144, 10941110.CrossRefGoogle ScholarPubMed
Ilicki, A., Marcus, C. & Karlsson, F. A. (1990) Hyperthyroidism and hypothyroidism in monozygotic twins: detection of stimulating and blocking TSH receptor antibodies using the FRTL5 cell line. Journal of Endocrinological Investigation, 13, 327331.CrossRefGoogle ScholarPubMed
Jongbloet, P. H., Van Soestbergen, M. & van der Veen, E. A. (1988) Month-of-birth distribution of diabetics and ovopathy: a new aetiological view. Diabetes Research, 9, 5158.Google Scholar
Kaplan, D. (1984) The onset of disease in twins and siblings with systemic lupus erythematosus. Journal of Rheumatology, 11, 648652.Google ScholarPubMed
Kirch, D. G., Kaufmann, C. A., Papadopoulos, N. M., et al (1985) Abnormal cerebrospinal fluid protein indices in schizophrenia. Biological Psychiatry, 20, 10391046.CrossRefGoogle ScholarPubMed
Knight, J. G., Knight, A. & Pert, C. B. (1987) Is schizophrenia a virally triggered antireceptor autoimmune disease? In Biological Perspectives of Schizophrenia (eds Helmchen, H. & Henn, F. A.), pp. 107127. Chichester: Wiley.Google Scholar
Knight, J. G., Knight, A., Menkes, D. B., et al (1990) Autoantibodies against brain septal region antigens specific to unmedicated schizophrenia? Biological Psychiatry, 28, 467474.CrossRefGoogle ScholarPubMed
Laing, P., Knight, J. G., Hill, J. M., et al (1989) Influenza viruses induce autoantibodies to a brain-specific 37-kDa protein in rabbit. Proceedings of the National Academy of Sciences of the USA, 86, 19982002.CrossRefGoogle ScholarPubMed
Lidz, T. & Whitehorn, J. C. (1949) Psychiatric problems in a thyroid clinic. Journal of the American Medical Association, 139, 698701.Google Scholar
McGuffin, P., Festenstein, H. & Murray, R. (1983) A family study of HLA antigens and other genetic markers in schizophrenia. Psychological Medicine, 13, 2143.CrossRefGoogle ScholarPubMed
McQueen, E. G. (1987) Pharmacological basis of adverse drug reactions. In Avery's Drug Treatment (3rd edn) (ed. Speight, T. M.), p. 235. Auckland: Adis.Google Scholar
Mednick, S. A., Machon, R. A., Huttunen, M. O., et al (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Archives of General Psychiatry, 45, 189192.CrossRefGoogle Scholar
Mellsop, G. W., Koadlow, L., Syme, J., et al (1974) Absence of rheumatoid arthritis in schizophrenia. Australian and New Zealand Journal of Medicine, 4, 247252.CrossRefGoogle ScholarPubMed
Millward, B. A., Welsh, K. I., Leslie, R. D. G., et al (1987) T cell receptor beta chain polymorphisms are associated with insulin-dependent diabetes. Clinical and Experimental Immunology, 70, 152157.Google ScholarPubMed
Miura, T., Ogata, T. & Ena, M. (1977) An epidemiological study on the susceptibility of Japanese people to Japanese encephalitis virus infection by season of birth. Nippon Eiseigaku Zasshi, 32, 429433.Google Scholar
Miyanaga, K., Machiyama, Y. & Juji, T. (1984) Schizophrenic disorders and HLA-DR antigens. Biological Psychiatry, 19, 121129.Google Scholar
Osterberg, E. (1978) Schizophrenia and rheumatic disease. Acta Psychiatrica Scandinavica, 58, 339359.Google Scholar
Pyke, D. A. & Nelson, P. G. (1976) Diabetes mellitus in identical twins. In The Genetics of Diabetes Mellitus (eds Creutzfeldt, W., Kobberling, J. & Neel, J. V.). Berlin: Springer-Verlag.Google Scholar
Rapaport, M. H., McAllister, C. G., Pickar, D., et al (1989) Elevated levels of soluble interleukin 2 receptors in schizophrenia. Archives of General Psychiatry, 46, 291292.Google Scholar
Rudduck, C., Beckman, L., Franzen, G., et al (1985) Complement factor C4 in schizophrenia. Human Heredity, 35, 223226.Google Scholar
Salier, J. P., Sesboue, R., Martin-Mondiere, C., et al (1986) Combined influences of Gm and HLA phenotypes upon multiple sclerosis susceptibility and severity. Journal of Clinical Investigation, 78, 533538.Google Scholar
Seboun, E., Robinson, M. A., Doolittle, T. H., et al (1989) A susceptibility locus for multiple sclerosis is linked to the T-cell receptor beta chain complex. Cell, 57, 10951100.Google Scholar
Spinner, M. W., Blizzard, R. M. & Childs, B. (1968) Clinical and genetic heterogeneity in idiopathic Addison's disease and hypoparathyroidism. Journal of Clinical Endocrinology, 28, 795804.Google Scholar
Svejgaard, A., Jakobsen, B. K., Platz, P., et al (1986) HLA associations in insulin-dependent diabetes: search for heterogeneity in different groups of patients from a homogeneous population. Tissue Antigens, 28, 237244.Google Scholar
Thomsen, M., Molvig, J., Zerbib, A., et al (1988) The susceptibility to insulin-dependent diabetes mellitus is associated with C4 allotypes independently of the association with HLA-DQ alleles in HLA-DR3,4 heterozygotes. Immunogenetics, 28, 320327.CrossRefGoogle ScholarPubMed
Tillil, H. & Kobberling, J. (1987) Age-corrected empirical genetic risk estimates for first-degree relatives of IDDM patients. Diabetes, 36, 9399.Google Scholar
Tiwari, J. L. & Terasaki, P. I. (1985) HLA and Disease Associations. New York: Springer-Verlag.Google Scholar
Turner, W. M. & Tsuang, M. T. (1990) Impact of substance abuse on the course and outcome of schizophrenia. Schizophrenia Bulletin, 16, 8795.Google Scholar
Warram, J. H., Krolewski, A. S., Gottlieb, M. S., et al (1984) Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers. New England Journal of Medicine, 311, 149152.Google Scholar
Wilcox, J. A. & Nasrallah, H. A. (1986) Organic factors in catatonia. British Journal of Psychiatry, 149, 782784.Google Scholar
Zhang, W. J., Cobain, T. J., Dawkins, R. L., et al (1988) Complement allotyping explains MHC associations in multiple sclerosis. Annals of the New York Academy of Sciences, 540, 372373.CrossRefGoogle ScholarPubMed
Submit a response

eLetters

No eLetters have been published for this article.