Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T21:24:02.907Z Has data issue: false hasContentIssue false

X-Rays from Galaxies and Clusters of Galaxies: Observations and Phenomenology

Published online by Cambridge University Press:  04 August 2017

C. R. Canizares*
Affiliation:
Massachusetts Institute of Technology, Deparment of Physics and Center for Space Research, 37-501 Cambridge, MA 02139

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-Ray observations of galaxies and clusters can, in principle, trace the binding mass in these systems. I review some of the relevant work. The mass of hot gas in rich clusters is comparable to or exceeds the mass in visible stars. This proportion of gas to stellar material could be universal, although there is no direct evidence that it must be. Studies of the distribution of the gas indicate the presence of dark matter in the envelopes of some dominant cluster galaxies, most notably M87. The M/LB values increase with radius to values of ∼ 400–600 M/L. Uncertainties in the temperature distribution of the gas have hampered these analyses and have made it difficult to draw definitive conclusions about the binding mass in clusters. Recent work on Coma suggests that M/L is falling with radius and the total M/L for the cluster may be as low as ∼ 120. Studies of early type galaxies show that many contain hot gas with temperatures ∼107 K. There is evidence for the existence of cooling flows, and gravity rather than supernovae may be the dominant source of energy that heats the gas. The deduced binding masses for several bright galaxies are uncertain because of the unknown temperature profiles. Values of M/LB ≃ 20–30 within ∼ 30–40 kpc are indicated if one assumes isothermality, but values as low as 5 and as high as 100 are allowed. With better models one may be able to reduce these uncertainties.

Type
Review Paper
Copyright
Copyright © Reidel 1987 

References

Abramopoulos, F. and Ku, W. 1983, Ap. J., 271, 446.CrossRefGoogle Scholar
Bahcall, N. 1982 Ap. J. (Letters) 258, L17.Google Scholar
Bierman, P. and Kronberg, P.P. 1983, Ap. J. (Letters), 268, L69.CrossRefGoogle Scholar
Bierman, P., Kronberg, P.P. and Madore, B.F. 1982, Ap. J. (Letters), 256, L37.Google Scholar
Binney, J. and Cowie, L. 1981, Ap. J., 247, 464.Google Scholar
Blumenthal, G.R., Faber, S.M., Primack, J.R. and Rees, M.J. 1984, Nature, 311, 517.CrossRefGoogle Scholar
Bregman, J. 1985 private communication.Google Scholar
Caldwell, N., 1984, Pub. Astron. Soc. Pacific, 96, 287.CrossRefGoogle Scholar
Canizares, C.R. 1981, in Giacconi, R. (ed.), X-Ray Astronomy with the Einstein Satellite, (D. Reidel), 215.Google Scholar
Canizares, C.R., Donahue, M., Trinchieri, G., Stewart, G. and McGlynn, T. 1985 (submitted to Ap. J.).Google Scholar
Canizares, C.R., Fabbiano, G. and Trinchieri, G. 1986 (in preparation).Google Scholar
Cavaliere, A. 1979 in Giacconi, R. and Setti, G. (eds.), X-Ray Astronomy, (D. Reidel), 217.Google Scholar
Cavaliere, A. and Fusco-Femiano, R. 1976, Astron. Ap. 49, 137.Google Scholar
Cavaliere, A. and Fusco-Femiano, R., 1978, Astron. Ap. 70, 677.Google Scholar
Channan, G. and Abramopoulos, F. 1984, Ap. J., 287, 89.Google Scholar
Cowie, L. 1985 private communication.Google Scholar
Davies, R. L. 1981, M.N.R.A.S., 194, 879 Google Scholar
Demoulin-Ulrich, M.-H., Butcher, H. and Boksenberg, A. 1984, Ap. J. 285, 527.Google Scholar
Dressel, L. and Wilson, A. 1985, Ap. J., 291, 668.Google Scholar
Dressler, A. 1978, Ap. J., 226, 55.Google Scholar
Fabian, A.C., Nulsen, P.E.J. and Canizares, C.R. 1984, Nature, 310, 733.CrossRefGoogle Scholar
Fabbiano, G. and Trinchieri, G. 1985, Ap. J. (in press).Google Scholar
Faber, S. and Gallagher, J. 1976 Ap. J. 204, 365.Google Scholar
Faber, S. and Gallagher, J. 1979, Ann. Rev. Astron. Ap. 17, 135.Google Scholar
Fabricant, D., Lecar, M. and Gorenstein, P. 1980, Ap. J., 241, 552.Google Scholar
Fabricant, D. and Gorenstein, P. 1983, Ap. J., 267, 535.CrossRefGoogle Scholar
Fabricant, D. Rybicki, G. and Gorenstein, P. 1984, Ap. J. 286, 186.CrossRefGoogle Scholar
Forman, W. and Jones, C. 1982 Ann. Rev. Astron. Ap. 20, 547.Google Scholar
Forman, W., Schwarz, J., Jones, C., Liller, W. and Fabian, A. 1979, Ap. J. (Letters), 234, L27.Google Scholar
Henriksen, M. and Mushotzky, R. 1985a Ap. J., 292, 441.Google Scholar
Henriksen, M. and Mushotzky, R. 1985b, (preprint).Google Scholar
Hu, E., Cowie, L., and Wang, Z. 1985, (preprint).Google Scholar
Jones, C. and Forman, W. 1984, 276, 38.Google Scholar
Katz, N. and Richstone, D. 1985 (preprint).Google Scholar
Kriss, G.A., Cioffi, D. and Canizares, C.R. 1983, Ap. J., 272, 439.Google Scholar
Matilsky, T., Jones, C. and Forman, W. 1985, Ap. J., 291, 621.Google Scholar
McDonald, J. and Bailey, M. 1981, M.N.R.A.S., 197, 995.CrossRefGoogle Scholar
Mushotzky, R. 1984, in Proc. Symp. Hot Astrophys. Plasmas, Nice, 1982, Physica Scripta, T7, 157.CrossRefGoogle Scholar
Nulsen, P.E.J., Stewart, G.C. and Fabian, A.C. 1984, M.N.R.A.S., 208, 185.Google Scholar
Oemler, A., 1974, Ap. J., 194, 1.Google Scholar
Rothenflug, R. and Arnaud, M. 1985, Astron. Ap., 144, 431.Google Scholar
Rothenflug, R., Arnaud, M., Boulade, O., and Vigroux, L. 1984, in Oda, M. and Giacconi, R., (eds.), X-Ray Astronomy '84, (Tokyo: Inst. Space Astronautical Sci.), 391.Google Scholar
Sarazin, C. 1985, Rev. Mod. Phys. (in press).Google Scholar
Stanger, V.J., and Schwarz, J. 1986 submitted to Ap. J. Google Scholar
Stewart, G.C., Canizares, C.R., Fabian, A.C. and Nulsen, P.E.J. 1984, Ap. J., 278, 536.Google Scholar
Tammann, G. 1982, in Rees, M. and Stoneham, R., (eds.), Supernovae: A Survey of Current Research, (D. Reidel), 371.Google Scholar
Tonry, J. and Davis, M. 1981, Ap. J., 246, 666.Google Scholar
Trinchieri, G. and Fabbiano, G. 1986, Ap. J. (in press).Google Scholar
Trinchieri, G. Fabbiano, G. and Canizares, C. 1986 Ap. J. (submitted).Google Scholar
White, R.E. and Chevalier, R. A., 1984, Ap. J., 280, 561.Google Scholar