Published online by Cambridge University Press: 08 February 2017
In two previous publications (Mészáros and Mészáros 1988 “Paper I”; Bagoly, Mészáros, and Mészáros 1988 “Paper II”), we have studied the fluctuations of the X-ray background (XRB) expected if the XRB is produced by discrete sources distributed as galaxies. The distribution of matter was assumed to follow the large-scale structure in the form of spherical clusters (superclusters) or spherical voids. In Paper I the density contrast of XRB sources inside and outside structures was taken to be a step function of constant height, whereas in Paper II we introduced arbitrary density contrasts (independent of redshift) and allowed for a redshift evolution of the luminosity of the sources. This led to predicted angular fluctuations of the XRB, which, when we compared them with the HEAO–1 observational limit (Shafer 1983), allowed us to set limits on the type and density of structures.