Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T16:56:23.609Z Has data issue: false hasContentIssue false

White Dwarf Rotation: Observations and Theory

Published online by Cambridge University Press:  26 May 2016

Steven D. Kawaler*
Affiliation:
Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

White dwarfs rotate. The angular momentum in single white dwarfs must originate early in the life of the star, but also must be modified (and perhaps severely modified) during the many stages of evolution between birth as a main–sequence star and final appearance as a white dwarf. Observational constraints on the rotation of single white dwarf stars come from traditional spectroscopy and from asteroseismology, with the latter providing hints of angular velocity with depth. Results of these observational determinations, that white dwarfs rotate with periods ranging from hours to days (or longer), tells us that the processes by which angular momentum is deposited and/or drained from the cores of AGB stars are complex. Still, one can place strong limits on these processes by considering relatively simple limiting cases for angular momentum evolution in prior stages, and on subsequent angular momentum evolution in the white dwarfs. These limiting-case constraints will be reviewed in the context of the available observations.

Type
Session 5 Final Stages, Nucleosynthesis
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Bergeron, P., et al. (the WET collaboration) 1993, AJ 106, 1987 Google Scholar
Blackman, E., Frank, A., Markiel, J.A., Thomas, J.H., & Van Horn, H.M. 2001, Nature 409, 485 CrossRefGoogle Scholar
Bond, H., et al. 1996, AJ 112, 2699 Google Scholar
Fontaine, G., Brassard, P., Charpinet, S. 2003, in Thompson, M. et al. (eds), Asteroseismology Across the HR Diagram, Ap&SS 284, 257 Google Scholar
Greenstein, J.L., Boksenberg, A., Carswell, R., & Shortridge, K. 1977, ApJ 212, 186 Google Scholar
Greenstein, J.L. & Petersen, D.M. 1973, A&A 29, 23 Google Scholar
Handler, G., Romero-Colmenero, E., & Montgomery, M. 2002, MNRAS 335, 399 Google Scholar
Heber, U., Napiwotski, R., & Reid, I.N. 1997, A&A 323, 819 Google Scholar
Kawaler, S., Hostler, S., & Burkett, J. 2002, in: Silvotti, R. & DiMartini, D. (eds.), NATO Advance Research Workshop: The 13th European Workshop on White Dwarfs, (Dordrecht: Kluwer), in press Google Scholar
Kawaler, S. 2000, in: Ibanoglu, C. (ed.), NATO Advanced Study Institute: Variable Stars as Astrophysical Tools, (Dordrecht: Kluwer), 511 Google Scholar
Kawaler, S., Sekii, T., & Gough, D. 1999, ApJ 516, 349 CrossRefGoogle Scholar
Kawaler, S. 1996, in: Meynet, G. & Schaerer, D. (eds.), Stellar Remnants: Saas Fee Advanced Course 25, (Berlin: Springer), 1 Google Scholar
Kawaler, S. et al. (the WET collaboration) 1995, ApJ 450, 350 Google Scholar
Kawaler, S. 1987, PASP 99, 1322 CrossRefGoogle Scholar
Kleinman, S. et al. (the WET collaboration) 1998, ApJ 495, 424 CrossRefGoogle Scholar
Koester, D., Dreizler, S., Weidemann, V., & Allard, N. 1998, A&A 338, 612 Google Scholar
Langer, N., Heger, A., Wellstein, S., & Herwig, F. 1999, A&A 346, L37 Google Scholar
O'Brien, M.S. et al. (the WET collaboration) 1998, ApJ 495, 458 Google Scholar
O'Donoghue, D. & Warner, B. 1987, MNRAS 228, 949 Google Scholar
Pilachowski, C. & Milkey, R. 1984, PASP 96, 821 Google Scholar
Pilachowski, C. & Milkey, R. 1987, PASP 99, 836 Google Scholar
Roxburgh, I.W. 1965, Zeitschrift für Astrophysik 62, 134 Google Scholar
Spruit, H. 1998, A&A 333, 603 Google Scholar
Vauclair, G. et al. (the WET collaboration) 2002, A&A 381, 122 Google Scholar
Wickramasinghe, D. & Ferrario, L. 2000, PASP 112, 873 Google Scholar
Winget, D. et al. (the WET collaboration) 1991, ApJ 378, 326 Google Scholar
Winget, D. et al. (the WET collaboration) 1994, ApJ 430, 839 Google Scholar