Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T13:13:00.906Z Has data issue: false hasContentIssue false

Wave dynamics and star formation in Taurus

Published online by Cambridge University Press:  03 August 2017

Ralph E. Pudritz
Affiliation:
Dept. of Physics, McMaster University, Hamilton, ON L8S 4M1
Ana I. Gomez de Castro
Affiliation:
Dept. of Physics, McMaster University, Hamilton, ON L8S 4M1

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mechanism underlying the formation of cores and larger scale structures in molecular clouds must play a fundamental role in the physics of star formation since young stellar objects are usually found within or very near cores (Myers et al 1987, Beichman et al 1986). The Taurus cloud is an ideal object to study in this regard because of its proximity (160 pc), and because only low mass star formation is presently occurring there. Barnard's (1927) beautiful optical photograph of the region reveals that the obscuring gas and dust has filamentary structure that is comparable to the size of the cloud complex (several 10's of pc). This structure is clearly seen in CO maps of the region as well (eg. Duvert et al 1986) where it is apparent that structure on much larger size scales than cores is common. In addition to the filamentary structure one also observes that there are small dark clouds present such as L1489, L1495, etc.

Type
Star Formation
Copyright
Copyright © Kluwer 1991 

References

Arons, J., and Max, C.E. 1975, Ap. J. , 196, L77.Google Scholar
Barnard, E.E. 1927, in Carnegie Inst. of Washington Publications No. 247,I Google Scholar
Beichman, C.A., Myers, P.C., Emerson, J.P., Harris, S., Mathieu, R., Benson, P.J., and Jennings, R.E. 1986, Ap. J. , 307, 337.CrossRefGoogle Scholar
Benson, P.J., and Myers, P.C. 1989, Ap. J. Suppl. , 71, 89.CrossRefGoogle Scholar
Blitz, L. 1987, in Physical Processes in Interstellar Clouds , Morfill, G.E. and Scholer, M. eds. (Kluwer: Dordrecht)35 Google Scholar
Blitz, L. and Shu, F. 1980, Ap. J. , 238, 148.Google Scholar
Bonazzola, S., Falgarone, E., Heyvaerts, J., Perault, M., and Puget, J.L. 1987, Astr. Ap. , 172, 293.Google Scholar
Braginskii, S.I. 1965, in Reviews of Plasma Physics , Vol 1.,*** Leontovich, M.A. ed. (New York: Consultants Bureau)205.Google Scholar
Carlberg, R.G., and Pudritz, R.E. 1990, M. N. R. A. S. , ***, in press.Google Scholar
Duvert, G., Cernicharo, J., and Baudry, A. 1986, Astr. Ap. , 164, 349.Google Scholar
Elmegreen, B.G. 1982, Astr. Ap. , 253, 655.Google Scholar
Heyer, M.H. 1988, Ap. J. , 324, 311.CrossRefGoogle Scholar
Heyer, M.H., Vrba, F.J., Snell, R.L., Schloerb, F.P., Strom, S.E., Goldsmith, P.F., and Strom, K.M. 1987, Ap. J. , 321, 855.Google Scholar
Kulkarni, S.R., and Heiles, C. 1988, in Galactic and Extragalactic Radio Astronomy , Verschuur, G.L. and Kellermann, K.I. eds. (Springer-Verlag: New York)95 Google Scholar
Kulsrud, R., and Pearce, W.P. 1969, Ap. J. , 156, 445.Google Scholar
Loren, R.B. 1989, Ap. J. , 338, 902, 925.CrossRefGoogle Scholar
Matsumoto, R, Horiuchi, T., Hanawa, T., and Shibata, K. 1989, Pub. Astr. Soc. Japan, *** Google Scholar
Moneti, A., Pipher, J.L., Helfer, H.L., McMillan, R.S., and Perry, M.L. 1985, Ap. J. , 282, 508.CrossRefGoogle Scholar
Myers, P.C., and Goodman, A. 1988, Ap. J. , 326, L27.Google Scholar
Myers, P.C., Fuller, G.A., Mathieu, R.D., Beichman, C.A., Benson, P.J., Schild, R.E., and Emerson, J.P. 1987, Ap. J. , 319, 340.Google Scholar
Pudritz, R.E. 1990, Ap. J. , 350, 195.Google Scholar
Shuter, W.L., Dickman, R.L., and Klatt, C. 1987, Ap. J. , 322, L103.CrossRefGoogle Scholar