No CrossRef data available.
Published online by Cambridge University Press: 14 August 2015
It is proposed that Venus may have polar seas which are acidic and thus cannot precipitate calcium carbonate. This leaves the carbon dioxide in the atmosphere. The argument is that the great equatorial land masses always have been too hot for liquid water and thus could not be weathered to give the sea salts necessary to form the precipitate. The action of steam on rocks is to liberate acids which are volatile and would dissolve in the polar seas. The volcanic vapors issuing in the early times consisting mainly of water and carbon dioxide would have begun polar seas at once since the expected equatorial (black body) surface temperature of the bare planet is too high (464 K) due to proximity of the sun. The accumulation of carbon dioxide in the atmosphere would have ensured the continued increase of the temperature due to the greenhouse effect. On earth, on the contrary, condensation over most of the planetary surface probably was possible from the beginning. Liquid water, ice-weathering, and river transport of salts to the seas all probably occurred from the beginning.
As the pressure at the surface probably approximates 100 atm (Venera 5 and 6) we can expect the polar seas to be below the boiling point although possibly hot. An isothermal layer of some thickness is naturally established over liquid water heated by infrared from above. Evaporation and condensation to form rain constitutes an efficient heat transport mechanism. Such a layer naturally would move toward lower latitude carrying moisture which then will rise and eventually move poleward in the high atmosphere causing rain and possibly the planet wide cloud cover. The atmosphere containing volatiles such as hydrochloric and hydrofluoric and sulfurous and sulfuric acids as well as carbon dioxide will form clouds which might be expected to consist of concentrated acid solutions. The main rain over the poles probably falls from altitudes well below the cloud top seen from earth. It is possible that the Venus clouds seen from earth are non aqueous just as our stratosphere carries dust clouds apparently of ammonium sulfate. At the moment it is very difficult to decide between these alternatives.
In the more polar regions the seas might conceivably be as cool as 50 °C.