Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T03:33:05.929Z Has data issue: false hasContentIssue false

Variations of the Solar Spectral Irradiance

Published online by Cambridge University Press:  13 May 2016

S. K. Solanki
Affiliation:
Max-Planck-Institut für Aeronomie, 37191 Katlenburg-Lindau, Germany
M. Fligge
Affiliation:
Institute of Astronomy, ETH-Zentrum, 8092 Zürich, Switzerland
Y. C. Unruh
Affiliation:
Institut für Astronomie, Universität Wien, Türkenschanzstr. 17, 1180 Wien, Austria

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The relative variation of the solar irradiance depends strongly on the wavelength band, with the shortest wavelengths exhibiting the largest variations over the solar cycle. This means that not only the total irradiance varies with solar activity but also the shape of the solar spectrum. These measured effects have been successfully modelled. The models indicate that more than 90% of the total and spectral irradiance variations over the solar cycle are due to the magnetic field at the solar surface. The solar spectral irradiance variations play an important part in constraining the models, since they can directly distinguish between changes in the solar effective temperature and changes produced by variations of solar surface magnetic flux. They also help to determine what fraction of the total solar radiative input to Earth is absorbed by the Earth's atmosphere.

Type
Session I: Global Structure and Evolution of the Solar Interior
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Brueckner, G. E., Edlow, K. L., Floyd, L. E., Lean, J. L., van Hoosier, M. E. 1993, J. Geophys. Res. 98, 10695.CrossRefGoogle Scholar
Cebula, R. P., Deland, M. T. 1998, in: Solar Electromagnetic Radiation Study for Solar Cycle 22, Kluwer Academic Publishers, 117.CrossRefGoogle Scholar
Cebula, R. P., DeLand, M. T., Schlesinger, B. M. 1992, J. Geophys. Res. 97, 11613.CrossRefGoogle Scholar
Chapman, G. A., McGuire, T.E. 1977, ApJ 217, 657660.CrossRefGoogle Scholar
Chapman, G. A., Cookson, A.M., Dobias, J.J. 1997, ApJ 482, 541545.CrossRefGoogle Scholar
DeLand, M. T., Cebula, R. P. 1998, Sol. Phys. 177, 105.CrossRefGoogle Scholar
Fligge, M., Solanki, S.K. 2000, Geophys. Res. Lett. 27, 21572160.CrossRefGoogle Scholar
Fligge, M., Solanki, S.K., Unruh, Y. 2000, A&A 353, 380388.Google Scholar
Fligge, M., Solanki, S.K., Unruh, Y.C., Fröhlich, C., Wehrli, Ch. 1998, A&A 335, 709718.Google Scholar
Fligge, M., Solanki, S.K., Unruh, Y.C., Meunier, N. 2001, in: Solar Variability and Climate, ESA SP-463, in press.Google Scholar
Floyd, L. E., Reiser, P. A., Crane, P. C., Herring, L. C., Prinz, D. K., Brueckner, G. E. 1998, Sol. Phys. 177, 7987.CrossRefGoogle Scholar
Fontenla, et al. 1999, ApJ 518, 480499.CrossRefGoogle Scholar
Foukal, P., Lean, J. 1986, ApJ 302, 826835.CrossRefGoogle Scholar
Fröhlich, C. 2000, Space Sci. Rev. 94, in press.CrossRefGoogle Scholar
Fröhlich, C. 2001: in: Recent insights into the physics of the Sun and heliosphere – highlights from SOHO and other space missions, eds. Brekke, P., Fleck, B. and Gurman, J.B., ASP conference series 200, in press.Google Scholar
Heath, D. F., Schlesinger, B. M. 1986, J. Geophys. Res. 91, 8672.CrossRefGoogle Scholar
Hovestadt, D., Hilchenbach, M., Bürgi, A., et al. 1995, Sol. Phys. 162, 441481.CrossRefGoogle Scholar
Hoyt, D. V., Schatten, K. H. 1993, J. Geophys. Res. 98, 18895.CrossRefGoogle Scholar
Kuhn, J.R. 1996, in: Global Changes in the Sun: VI Winter School at Instituto d'Astrophysica de Canarias, ed. Roca Cortes, T., Cambridge University Press, Cambridge, in press.Google Scholar
Larkin, A., Haigh, J. D., Djavidnia, S. 2000, Space Sci. Rev. 94, in press.CrossRefGoogle Scholar
Lean, J. 2001, in: Recent insights into the physics of the Sun and heliosphere – highlights from SOHO and other space missions, eds. Brekke, P., Fleck, B. and Gurman, J.B., ASP conference series 200, in press.Google Scholar
Lean, J., Beer, J., Bradley, R. 1995, Geophys. Res. Lett. 22, 31953198.CrossRefGoogle Scholar
Lean, J. L., Rottman, G. J., Kyle, H. L., Woods, T. N., Hickey, J. R., Puga, L. C. 1997, J. Geophys. Res. 102, 2993929956.CrossRefGoogle Scholar
Lockwood, M., Stamper, R. 1999, Geophys. Res. Lett. 26, 2461.CrossRefGoogle Scholar
Mitchell, W. E. Jr., Livingston, W. C. 1991, ApJ 372, 336348.CrossRefGoogle Scholar
Ogawa, H.S., Judge, D.L., McMullin, D.R., Gangopadhyay, P. 1998, J. Geophys. Res. 103, 1.CrossRefGoogle Scholar
Parker, E. N. 1987, ApJ 312, 868879.CrossRefGoogle Scholar
Radick, R. 2001, in: Recent insights into the physics of the Sun and heliosphere – highlights from SOHO and other space missions, eds. Brekke, P., Fleck, B. and Gurman, J.B., ASP conference series 200, in press.Google Scholar
Rottman, G. J., Woods, T. N., Sparn, T. P. 1993, J. Geophys. Res. 98, 10667.CrossRefGoogle Scholar
Rottman, G., Woods, T., Sparn, T. 2001, Adv. Space Res., in press.Google Scholar
Solanki, S. K., Fligge, M. 1998, Geophys. Res. Lett. 25, 341344.CrossRefGoogle Scholar
Solanki, S. K., Fligge, M. 1999, Geophys. Res. Lett. 26, 24652468.CrossRefGoogle Scholar
Solanki, S. K., Fligge, M. 2001, Adv. Space Res., in press.Google Scholar
Solanki, S. K., Unruh, Y. C. 1998, A&A 329, 747753.Google Scholar
Unruh, Y. C., Solanki, S. K., Fligge, M. 1999, A&A 345, 635642.Google Scholar
White, O. R., de Toma, G., Rottman, G. J., Woods, T. N., Knapp, B. G. 1998, Sol. Phys. 177, 89103.CrossRefGoogle Scholar
Wolff, C. L., Hickey, J. R. 1987a, Science 235, 16311633.CrossRefGoogle Scholar
Wolff, C. L., Hickey, J. R. 1987b, Sol. Phys. 109, 118.CrossRefGoogle Scholar
Woods, T. N., Prinz, D. K., Rottman, G. J. et al. 1996, J. Geophys. Res. 101, 95419569.CrossRefGoogle Scholar