Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T22:39:53.771Z Has data issue: false hasContentIssue false

Ultra-Cool Very Low-Mass Binaries

Published online by Cambridge University Press:  13 May 2016

Eduardo L. Martín
Affiliation:
Division of Geology and Planetary Sciences, Caltech, MC 150–21, Pasadena, CA 91125
Gibor Basri
Affiliation:
Astronomy Department, MC 3411, Univ. of California, Berkeley, CA 94720

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of ultra-cool (spectral type later than M6) binaries are summarized. Only a few systems are known, and all have been discovered in the past few years. We describe each of these discoveries. Despite their small numbers, some interesting trends among the binaries may be emerging. Ultra-cool binaries have a frequency similar to but perhaps a little less than stars (binary fraction ∼20%) and have mass ratios closer to unity, with respect to solar-type stars. Neither of these results can be considered firm, as there are far too few systems known, and observational biases would tend to move trends in these directions. There also seems to be a trend towards smaller separations in lower mass systems, which is less subject to observational biases. We discuss how these results fit into current ideas about binary formation, and favor a fragmentation scenario.

Type
III. Main Sequence Binary Statistics
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Abt, H. A., & Levitt, S. G. 1976, ApJS, 30, 273.CrossRefGoogle Scholar
Basri, G., Marcy, G., & Graham, J. 1996, ApJ, 458, 600.CrossRefGoogle Scholar
Basri, G., & Martín, E. L. 1998, in ASP Conf. Series Vol. 134, Brown Dwarfs and Extrasolar Planets, ed. Rebolo, R., Martín, E. L. & Zapatero Osorio, M. R., 284.Google Scholar
Basri, G., & Martín, E. L. 1999, AJ, 118, 2460.Google Scholar
Basri, G. et al. 2000, ApJ, in press.Google Scholar
Bate, M. 2000, MNRAS, 314, 33.Google Scholar
Becklin, E. E., & Zuckerman, B. 1988, Nature, 336, 656.Google Scholar
Boss, A. 1993, in “The Realm of Interacting Binary Stars”, ed. Sahade, J., Kluwer Academic Publishers, 355.Google Scholar
Bouvier, J., Rigaut, F., & Nadeau, D. 1997, A&A, 323, 139.Google Scholar
Burrows, A. et al. 1997, ApJ, 491, 856.Google Scholar
Burgasser, A. et al. 2000, ApJ, 531, L57.Google Scholar
Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, in press.Google Scholar
Clarke, C. 1996, in ASP Conf. Series, Vol. 90, The Origins, Evolution, and Destinies of Binary Stars in Clusters, ed. Milone, E. F. & Mermilliod, J. C., 242.Google Scholar
Dahn, C. et al. 2000, in From Giant Planets to Cool Stars, ed. Griffith, C. & Marley, M., in press.Google Scholar
Delfosse, X. et al. 1997, A&A, 327, L25.Google Scholar
Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485.Google Scholar
Fisher, D. A., & Marcy, G. W. 1992, ApJ, 396, 178.Google Scholar
Forrest, W. J., Skrutskie, M. F., & Shure, M. 1988, ApJ, 330, L119.Google Scholar
Halbwachs, J. L., Arenou, F., Mayor, M. Udry, S., & Queloz, D. 2000, A&A, 355, 581.Google Scholar
Henry, T. J., & Kirkpatrick, D. J. 1990, ApJ, 354, L29.Google Scholar
Henry, T. J., & McCarthy, D. W. 1990, ApJ, 350, 334.Google Scholar
Heacox, W. D. 1998, AJ, 115, 325.Google Scholar
Kirkpatrick, J. D. et al. 1999, ApJ, 519, 802.Google Scholar
Koerner, D. W., Kirkpatrick, J. D., McElwain, M. W., & Bonaventura, N. R. 1999, ApJ, 526, L25.Google Scholar
Kroupa, P., Petr, M. G., & McCaughrean, M. J. 1999, NewA, 4, 495.Google Scholar
Latham, D.W., Mazeh, T., Stefanik, R.P., Mayor, M., Burki, G. 1989, Nature, 339, 38.Google Scholar
Leinert, Ch., Weitzel, N., Richichi, A., Eckart, A., & Tacconi-Garman, L. E. 1994, A&A, 291, L47.Google Scholar
Leinert, Ch., Allard, F., Richichi, A., & Hauschildt, P. 2000, A&A, 353, 691.Google Scholar
Lowrance, P.J., Schneider, G., Kirkpatrick, J.D. et al. 2000, astro-ph/0005047.Google Scholar
Magazzù, A., Martín, E. L., & Rebolo, R. 1993, ApJ, 404, L17.Google Scholar
Marcy, G., & Butler, R. P. 1998, ARA&A, 36, 57.Google Scholar
Martín, E. L., Rebolo, R., & Zapatero Osorio, M. R. 1996, ApJ, 469, 706.Google Scholar
Martín, E. L. et al. 1998, ApJ, 509, L113.CrossRefGoogle Scholar
Martín, E. L. et al. 1999a, 118, 2466.Google Scholar
Martín, E. L., Brandner, W., & Basri, G. 1999a, Science, 283, 1718.Google Scholar
Martín, E. L., Koresko, Ch., Kulkarni, S., Lane, B., & Wizinowich, P. 2000a, ApJ, 529, L37.Google Scholar
Martín, E. L. et al. 2000a, ApJ, in press.Google Scholar
Martín, E. L., Koresko, Ch., Kulkarni, S., Lane, B., & Wizinowich, P. 2000b, ApJ, 529, L37.Google Scholar
Mermilliod, J. C., Rosvick, J. M., Duquennoy, A., & Mayor, M. 1992, A&A, 265, 513.Google Scholar
Najita, J. R., Tiede, G. P., & Carr, J. S. 2000, ApJ, in press.Google Scholar
Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., Golimowski, D. A., Matthews, K., Durrance, S. T. 1995, Nature, 378, 463.Google Scholar
Pinfield, D. J., Hodgkin, S. T., Jameson, R. F., Cossburn, M. R., Hambly, N. C., & Devereux, N. 2000, MNRAS, 313, 347.Google Scholar
Rebolo, R., Zapatero-Osorio, M. R., Madruga, S., Bejar, V. J. S., Arribas, S., Licandro, J. 1998, Science, 282, 1309.Google Scholar
Reid, I. N., & Gizis, J. E. 1997, AJ, 114, 1992.Google Scholar
Ruiz, M. T., Leggett, S. K., & Allard, F. 1997, ApJ, 491, L107.Google Scholar
Stauffer, J. R., Hamilton, D., & Probst, R. G. 1994, AJ, 108, 155.Google Scholar
Steele, I. A., & Jameson, R. F. 1995, MNRAS, 272, 630.Google Scholar
Tinney, Ch., Delfosse, X., & Forveille, Th. 1997, ApJ, 490, L95.Google Scholar
Tsvetanov, Z. et al. 2000, ApJ, 531, L61.Google Scholar
Zahn, J., & Bouchet, L. 1989, A&A, 223, 112.Google Scholar
Zapatero Osorio, M. R., Martín, E. L., & Rebolo, R. 1997, A&A, 323, 105.Google Scholar
Zapatero Osorio, M. R. et al. 1999, A&AS, 134, 537.Google Scholar