Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T00:50:23.758Z Has data issue: false hasContentIssue false

Two-Wind Interaction Models of the Proplyds in the Orion Nebula

Published online by Cambridge University Press:  25 May 2016

W. J. Henney
Affiliation:
Instituto de Astronomía, UNAM, Unidad Morelia, J. J. Tablada 1006, 58090 Morelia, Michoacán, México
S. J. Arthur
Affiliation:
Instituto de Astronomía, UNAM, Unidad Morelia, J. J. Tablada 1006, 58090 Morelia, Michoacán, México

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many low-mass stars in the Orion nebula are associated with very compact (≃ 1 arcsec) emission knots, known variously as proplyds, PIGs or LV knots. Some of these knots are teardrop-shaped, with “tails” pointing away from the massive star θ1 Ori C, which is the principal exciting star of the nebula. We discuss models of such knots, which invoke the interaction of the fast stellar wind from θ1 Ori C with a transonic photoevaporated flow from the surface of an accretion disk around a young low-mass star. We review previous analytic work and compare the results of the model with the observed brightnesses, morphologies and emission line profiles of the knots, as well as presenting new results from numerical hydrodynamical simulations.

Type
V. Low- and High-Mass Protostars and Their Environment
Copyright
Copyright © Kluwer 1997 

References

Bally, J., Devine, D. and Sutherland, R. 1995, In: Lizano, S. and Torrelles, J. M. (eds.): Circumstellar Disks, Outflows and Star Formation, RMAA (Serie de Conferencias) 1, 19.Google Scholar
Bertoldi, F. 1989, ApJ 346, 735.CrossRefGoogle Scholar
Bertoldi, F. and Draine, B. T. 1996, ApJ 458, 222.Google Scholar
Churchwell, E., Felli, M., Wood, D. O. S. and Massi, M. 1987, ApJ 321, 516.Google Scholar
Dyson, J. E. 1968, Ap&SS 1, 388.Google Scholar
Felli, M., Taylor, G. B., Catarzi, M., Churchwell, E. and Kurtz, S. 1993, A&AS 101, 207.Google Scholar
Garay, G., Moran, J. M. and Reid, M. J. 1987, ApJ, 314, 535.Google Scholar
Hayward, T. L., Houck, J. R. and Miles, J. W. 1994, ApJ, 433, 157.CrossRefGoogle Scholar
Henney, W. J. and Arthur, S. J. 1997, in preparation.Google Scholar
Henney, W. J., Meaburn, J., Raga, A. C. and Massey, R. 1997, A&A in press.Google Scholar
Henney, W. J., Raga, A. C., Lizano, S. and Curiel, S. 1996, ApJ 465, 216.Google Scholar
Howarth, I. D. and Prinja, R. K. 1989, ApJS 69, 527.Google Scholar
Johnstone, D., Hollenbach, D., Storzer, H., Bally, J. and Sutherland, R. 1996, BAAS 189, 4912 (Available at http://www.cita.utoronto.ca/~johnston/orion/abstract.html).Google Scholar
Kahn, F. D. 1969, Physica 41, 172.Google Scholar
Laques, P. and Vidal, J. L. 1979, A&A 73, 97.Google Scholar
Massey, R. M. and Meaburn, J. 1993, MNRAS 262, L48.Google Scholar
Massey, R. M. and Meaburn, J. 1995, MNRAS 273, 615.Google Scholar
McCaughrean, M. J. 1997, this volume.Google Scholar
McCaughrean, M. J. and O'Dell, C. R. 1996, AJ, 111, 1977.CrossRefGoogle Scholar
McCaughrean, M. J. and Stauffer, J. R. 1994, AJ, 108, 1382.Google Scholar
McCullough, P. R., Fugate, R. Q., Christou, J. C., Ellerbroek, B. L., Higgins, C. H., Spinhirne, J. M., Cleis, R. A. and Moroney, J. F. 1995, ApJ 438, 394.Google Scholar
Meaburn, J. 1988, MNRAS 233, 791.Google Scholar
O'Dell, C. R. and Wen, Z. 1994, ApJ 436, 194.CrossRefGoogle Scholar
O'Dell, C. R., Wen, Z. and Hu, X. 1993, ApJ 410, 696.Google Scholar
O'Dell, C. R. and Wong, S. K. 1996, AJ 111, 8460.Google Scholar
Panagia, N. 1973, AJ 78, 929.Google Scholar
Sutherland, R. S., Hartquist, T. W., Bally, J. and Dyson, J. E. 1997, in preparation.Google Scholar