Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T04:18:06.268Z Has data issue: false hasContentIssue false

Tidally–Induced Angular Momentum Transport in Disks

Published online by Cambridge University Press:  13 May 2016

Caroline E. J. M. L. J. Terquem*
Affiliation:
Institut d'Astrophysique de Paris, 98bis Bd Arago, 75014 Paris, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the transport of angular momentum induced by tidal effects in a disk surrounding a star in a pre–main sequence binary system. We consider the effect of both density and bending waves. Although tidal effects are important for truncating protostellar disks and for determining their size, it is unlikely that tidally–induced angular momentum transport plays a dominant role in the evolution of protostellar disks. Where the disk is magnetized, transport of angular momentum is probably governed by MHD turbulence. In a non self–gravitating laminar disk, the amount of transport provided by tidal waves is probably too small to account for the lifetime of protostellar disks. In addition, tidal effects tend to be localized in the disk outer regions.

Type
IX. Theoretical Context - Detailed Calculations
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Armitage, P. J., & Murray, J. R. 1998, MNRAS, 297, L81.Google Scholar
Balbus, S. A., & Hawley, J. F. 1998, Rev. Mod. Phys., 70, 1.Google Scholar
Blondin, J. M. 1999, preprint (astro–ph/9909181).Google Scholar
Godon, P., Livio, M., & Lubow, S. 1998, MNRAS, 295, L11.Google Scholar
Goldreich, P., & Nicholson, P. D. 1989, ApJ, 342, 1075.Google Scholar
Haraguchi, K., Boffin, H. M. J., & Matsuda, T. 1999, in Star Formation 1999, ed. Nakamoto, T. (Nobeyama Radio Observatory), 241.Google Scholar
Larson, R. B. 1989, in The Formation and Evolution of Planetary Systems, ed. Weaver, H. A. & Danly, L. (Cambridge: CUP), 31.Google Scholar
Larwood, J. D., Nelson, R. P., Papaloizou, J. C. B., & Terquem, C. 1996, MNRAS, 282, 597.CrossRefGoogle Scholar
Lin, D. N. C., & Papaloizou, J. C. B. 1993, in Protostars and Planets III, ed. Levy, E. H. & Lunine, J. (Tucson: Univ. Arizona Press), 749.Google Scholar
Lin, D. N. C., Papaloizou, J. C. B., & Savonije, G. J. 1990a, ApJ, 364, 326.Google Scholar
Lin, D. N. C., Papaloizou, J. C. B., & Savonije, G. J. 1990b, ApJ, 365, 748.Google Scholar
Nelson, R. P., Papaloizou, J. C. B. 1999, MNRAS, 309, 929.Google Scholar
Ogilvie, G. I., & Lubow, S. H. 1999, ApJ, 515, 767.CrossRefGoogle Scholar
Paczyński, B. 1977, ApJ, 216, 822.CrossRefGoogle Scholar
Papaloizou, J. C. B., & Lin, D. N. C. 1995, ApJ, 438, 841.CrossRefGoogle Scholar
Papaloizou, J. C. B., & Pringle, J. E. 1977, MNRAS, 181, 441.Google Scholar
Papaloizou, J. C. B., & Terquem, C. 1995, MNRAS, 274, 987.Google Scholar
Savonije, G. J., Papaloizou, J. C. B., & Lin, D. N. C. 1994, MNRAS, 268, 13.Google Scholar
Sawada, K., Matsuda, T., & Hachisu, I. 1986, MNRAS, 219, 75.Google Scholar
Shu, F. H. 1976, in Structure and Evolution of Close Binary Systems, IAU Symp. 73, ed. Eggleton, P., Mitton, S. & Whelan, J. (Reidel: Dordrecht), 253.CrossRefGoogle Scholar
Spruit, H. C. 1987, A&A, 184, 173.Google Scholar
Spruit, H. C., Matsuda, T., Inoue, M., & Sawada, K. 1987, MNRAS, 229, 517.Google Scholar
Steeghs, D., Harlaftis, E. T., & Horne, K. 1997, MNRAS, 290, L28.Google Scholar
Terquem, C. E. J. M. L. J. 1998, ApJ, 509, 819.CrossRefGoogle Scholar
Yukawa, H., Boffin, H. M. J., & Matsuda, T. 1997, MNRAS, 292, 321.CrossRefGoogle Scholar