Published online by Cambridge University Press: 25 May 2016
The analysis of thermal radiation emitted from the atmospheres of isolated neutron stars allows one to measure their surface temperatures, magnetic fields, masses, and radii, as well as the chemical composition of their atmospheres. Thus, multiwavelength observations of this radiation provide an important tool for studying the structure and evolution of neutron stars and for elucidating properties of the superdense matter in their interiors. We describe recent theoretical and observational results on thermal radiation from radio pulsars and radio-quiet neutron stars and discuss their astrophysical implications.