Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T16:39:44.987Z Has data issue: false hasContentIssue false

Thermal Inelastic Collision Processes

Published online by Cambridge University Press:  03 August 2017

M. J. Seaton*
Affiliation:
Department of Physics, University College, University of London, London, England

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Section II contains a summary of relevant collision theory methods. Section III is concerned with heavy particle collisions: excitation of H 1s hyperfine structure (hfs) states by H atom impact; excitation of H2 rotation by H and H2 impact; H 2s→2p transitions produced by proton impact; charge exchange reactions; excitation of atomic levels by proton impact. Section IV deals with inelastic collisions between atoms and electrons. Use of the Born and distorted wave approximations is discussed. Calculations of cross sections for excitation of forbidden lines in pq configurations are reviewed and new results presented for O+2, N+, C+, and Si+, both variational and semiempirical methods being used. In Sec. V, concerned with atomic photoionization, new results are given for photoionization from 2pq configurations.

Type
Part II: Theoretical Considerations on the Production and Dissipation of Velocity Fields in the Interstellar Medium
Copyright
Copyright © American Physical Society 1958 

References

1 Hebb, M. H. and Menzel, D. H., Astrophys. J. 92, 408 (1940).Google Scholar

2 (a) Seaton, M. J., Proc. Roy. Soc. (London) A208, 408 (1951); (b) Phil. Trans. A245, 469 (1953); (c) Proc. Roy. Soc. (London) A218, 400 (1953); (d) Ann. Astrophys. 17, 550 (1954); (e) The Airglow and the Aurorae , edited by Armstrong, E. B. and Dalgarno, A. (Pergamon Press, London, 1955), p. 289; (f) Ann. Astrophys. 18, 188 (1955); (g) ibid. 18, 206 (1955); (h) Compt. rend. 240, 1317 (1955); (i) Monthly Notices Roy. Astron. Soc. 115, 279 (1955); (j) Proc. Phys. Soc. (London) A68, 457 (1955); (k) Proc. Roy. Soc. (London) A231, 37 (1955); (l) Proc. Phys. Soc. (London) A70, 620 (1957).Google Scholar

3 Kohn, W., Phys. Rev. 74, 1763 (1948).Google Scholar

It is assumed that exact atomic wave functions are used; an additional error will result from using approximate atomic functions.Google Scholar

4 Ham, F. S., Solid State Physics , edited by Seitz, F. and Turnbull, D. (Academic Press, Inc., New York, 1955), Vol. 1, p. 127.Google Scholar

5 Bates, D. R. and Dalgarno, A., The Airglow and the Aurorae , edited by Armstrong, E. B. and Dalgarno, A. (Pergamon Press, London, 1955), p. 328.Google Scholar

6 Purcell, E. M. and Field, G. B., Astrophys. J. 124, 542 (1956).CrossRefGoogle Scholar

7 See also Wittke, J. P. and Dicke, R. H., Phys. Rev. 103, 620 (1956).Google Scholar

8 Rhodes, J. E., Phys. Rev. 70, 932 (1946).Google Scholar

9 Spitzer, L., Astrophys. J. 109, 337 (1949).Google Scholar

10 Takayanagi, K., Proc. Phys. Soc. (London) A70, 348 (1957).Google Scholar

11 Margenau, H., Phys. Rev. 63, 131 (1943).Google Scholar

12 Evett, A. A. and Margenau, H., Phys. Rev. 90, 1021 (1953).CrossRefGoogle Scholar

13 Takayanagi, K. and Kaneko, S., Sci. Rept. Saitama Univ. A1, 111 (1954).Google Scholar

14 Spitzer, L. and Greenstein, J. L., Astrophys. J. 114, 407 (1951).CrossRefGoogle Scholar

15 Kipper, A. Y., Tartu Astron. Obs. Publ. 32, 63 (1952).Google Scholar

16 Purcell, E. M., Astrophys. J. 116, 457 (1952)Google Scholar

17 Dalgarno, A. and Yadav, H. N., Proc. Phys. Soc. (London) A66, 173 (1953).Google Scholar

18 Chamberlain, J. W., Astrophys. J. 124, 390 (1956).Google Scholar

In the case of H 2s → 2p the large excitation rate for proton impact may be understood as a consequence of the threshold energies being very small.Google Scholar

19 Bates, D. R. and Spitzer, L. Astrophys. J. 113, 441 (1951).Google Scholar

20 Herzberg, G., Mém. soc. roy. sci. Liège 15, 291 (1955).Google Scholar

21 Massey, H. S. W., Handbuch der Physik (Springer-Verlag, Berlin, 1956), Vol. 36, p. 307; Revs. Modern Phys. 28, 199 (1956).Google Scholar

22 These figures are taken from Bates, Fundaminsky, Leech, , and Massey, , Phil. Trans. Roy. Soc. A243, 93 (1950).Google Scholar

23 Geltman, S., Phys. Rev. 102, 171 (1956).Google Scholar

24 Chamberlain, J. W., Astrophys. J. 117, 387 (1952).Google Scholar

25 McCarroll, R., Proc. Phys. Soc. (London) A70, 460 (1957).CrossRefGoogle Scholar

26 Moiseiwitsch, B. L., Monthly Notices Roy. Astron. Soc. 117, 189 (1957).Google Scholar

27 Condon, E. U. and Shortley, G. H., The Theory of Atomic Spectra (Cambridge University Press, New York, 1951), p. 98.Google Scholar

28 Yamanouchi, , Inui, , and Amemiya, , Proc. Phys. Math. Soc. Japan 22, 847 (1940).Google Scholar

29 Miyamoto, S., Mém. Coll. Sci., Kyoto Imp. Univ. A23, 467 (1941).Google Scholar

30 Aller, L. H., Astrophys. J. 111, 609 (1950).Google Scholar

31 Aller, L. H. and White, M. L., Astrophys. J. 54, 181 (1949).Google Scholar

32 Seaton, M. J. and Osterbrock, D. E., Astrophys. J. 125, 66 (1957).Google Scholar

33 Kennedy, J. M. and Cliff, M. J., Report CRT-609, Atomic Energy of Canada Ltd., Chalk River Project (1955).Google Scholar

See reference 2(f). It may be noted that the agreement between the empirical and DW results for the individual elements of the S matrix is a good deal less satisfactory than the agreement between the final collision strengths.Google Scholar

34 Spitzer, L. and Savedoff, M. P., Astrophys. J. 111, 593 (1950).Google Scholar

35 Osterbrock, D. E., Phys. Rev. 87, 468 (1952).Google Scholar

36 Bransden, , Dalgarno, , John, , and Seaton, , Proc. Phys. Soc. (London) 71, 877 (1958).Google Scholar

37 Massey, H. S. W. and Moiseiwitsch, B. L., Proc. Roy. Soc. (London) A205, 483 (1951).Google Scholar

38 Staver, T. B., Arch. Math. Naturvidenskab B51, 29 (1951).Google Scholar

39 Borowitz, S. and Greenberg, H., Bull. Am. Phys. Soc. Ser. II, 2, 172 (1957).Google Scholar

40 Maecker, , Peters, , and Schenk, , Z. Physik 140, 119 (1955).Google Scholar

41 Pederson, , Malamud, , and Hammer, , Bull. Am. Phys. Soc. Ser. II, 2, 172 (1957).Google Scholar

42 Baker, J. G. and Menzel, D. H., Astrophys. J. 88, 52 (1938).Google Scholar

§ For previous calculations, see Bates, D. R. and Seaton, M. J., Monthly Notices Roy. Astron. Soc. 109, 698 (1949); Seaton, M. J., Proc. Roy. Soc. (London) A208, 408 (1951); Aller, L. H., Gaseous Nebulae (Chapman and Hall, Ltd., London, 1956), p. 145.Google Scholar

|| I am indebted to Miss C. Froese for the Ne+4 results and to Hartree, D. R. for Ne+3 .Google Scholar

43 Burgess, A. and Seaton, M. J., Revs. Modern Phys. 30, 992 (1958), following paper.Google Scholar

44 Bates, D. R., Monthly Notices Roy. Astron. Soc. 106, 432 (1946).Google Scholar

45 Po Lee, and Weissler, G. L., Proc. Roy. Soc. (London) A220, 71 (1953).Google Scholar

46 Bates, D. R. and Damgaard, A., Phil. Trans. Roy. Soc. London A242, 101 (1949).Google Scholar

47 Jutsum, P. J., Proc. Phys. Soc. (London) A67, 190 (1954).Google Scholar

48 Bates, D. R. and Massey, H. S. W., Proc. Roy. Soc. (London) A177, 329 (1941).Google Scholar

Note added in proof (June 17, 1958).—Improved calculations [Burgess, Monthly Notices Roy. Astron. Soc. (to be published)] give radiative Balmer decrements similar to those obtained by Baker and Menzel. A recent experimental determination of the elastic electron-hydrogen cross section [Brackmann, Fite, and Neynaber, Phys. Rev. (to be published)] is consistent with the results of Table X. Field [Proc. Inst. Radio Engrs. 46, 240 (1958)] obtains cross sections for (49) in close agreement with our results.Google Scholar