Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T17:30:41.478Z Has data issue: false hasContentIssue false

Synthetic Infrared Spectra

Published online by Cambridge University Press:  03 August 2017

Robert L. Kurucz*
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Sun is the star we can observe with the highest spectral resolution and signal-to-noise. From studying the infrared spectrum we can learn about the Sun, about stars in general, and about atomic and molecular spectroscopy. We discuss the computer programs for spectrum synthesis, the infrared flux and central intensity atlases of the solar spectrum, and the atomic and molecular line data. Considerable work is still required to improve the observations and to improve the line data.

Type
Part 6: The Infrared Spectrum
Copyright
Copyright © Kluwer 1994 

References

Delbouille, L., Roland, G., Brault, J., and Testerman, L.: 1981, Photometric Atlas of the Solar Spectrum from 1850 to 10000 cm–1 , Kitt Peak National Observatory, Tucson.Google Scholar
Farmer, C. B. and Norton, R. H.: 1989, A High-Resolution Atlas of the Infrared Spectrum of the Sun and Earth Atmosphere from Space, NASA Reference Pub. 1224.Google Scholar
Farrenq, R., Guelachvili, G., Sauval, A. J., Grevesse, N., Farmer, C. B.: 1991, J. Molec. Spectrosc. 149, 375.CrossRefGoogle Scholar
Kohl, J. L., Parkinson, W. H., and Kurucz, R. L.: 1978, Center and Limb Solar Spectrum in High Spectral Resolution: 225.2 to 319.6 nm, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA.Google Scholar
Kurucz, R. L.: 1970, Smithsonian Astrophys. Obs. Special Rep. No. 309.Google Scholar
Kurucz, R. L.: 1992a, in Cox, A. N., Livingston, W. C., and Matthews, M. (eds.), The Solar Interior and Atmosphere, University of Arizona Press, Tucson, p. 663.Google Scholar
Kurucz, R. L.: 1992b, Rev. Mexicana Astron. Astrof., 23, 45.Google Scholar
Kurucz, R. L.: 1992c, Astrophys. J. (Letters), submitted.Google Scholar
Kurucz, R. L. and Avrett, E. H.: 1981, Smithsonian Astrophys. Obs. Special Rep. No. 391.Google Scholar
Kurucz, R. L. and Furenlid, I.: 1981, Smithsonian Astrophys. Obs. Special Rep. No. 387.Google Scholar
Kurucz, R. L., Furenlid, I., Brault, J., and Testerman, L.: 1984, Solar Flux Atlas from 296 to 1300 nm, National Solar Observatory, Sunspot, NM.Google Scholar
Neckel, H. and Labs, D.: 1984, Solar Phys. 90, 205.CrossRefGoogle Scholar
Livingston, W. and Wallace, L.: 1991, National Solar Obs. Tech. Rep. No. 91-001.Google Scholar
Peterson, D. M.: 1979, personal communication.Google Scholar
Pierce, A. K. and Breckinridge, J. B.: 1973, Kitt Peak National Obs. Contribution No. 559.Google Scholar
Rothman, L. S., Gamache, R. R., Goldman, A., Brown, L. R., Toth, R. A., Pickett, H. M., Poynter, R. L., Flaud, J.-M., Camry-Peyret, C., Barbe, A., Husson, N., Rinsland, C. P., and Smith, M. A. H.: 1987, Appl. Optics 26, 4058.CrossRefGoogle Scholar
Vernazza, J. E., Avrett, E. H., and Loeser, R.: 1981, Astrophys. J. Suppl. 45, 635.CrossRefGoogle Scholar
Vidal, C.R., Cooper, J., and Smith, E.W.: 1973, Astrophys. J. Suppl. 25, 37.CrossRefGoogle Scholar