Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T00:13:58.214Z Has data issue: false hasContentIssue false

Synthetic high-resolution line spectra of star-forming galaxies below 1200 Å, based on FUSE spectral libraries of hot stars

Published online by Cambridge University Press:  26 May 2016

Carmelle Robert
Affiliation:
Département de physique, Université Laval and Observatoire du mont Mégantic, Québec, QC, G1K 7P4, Canada
Anne Pellerin
Affiliation:
Département de physique, Université Laval and Observatoire du mont Mégantic, Québec, QC, G1K 7P4, Canada
Alessandra Aloisi
Affiliation:
Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
Claus Leitherer
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Charles G. Hoopes
Affiliation:
Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
Timothy M. Heckman
Affiliation:
Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have generated far-UV stellar libraries using spectra of hot stars in the Galaxy and the Large and Small Magellanic Clouds. These libraries were implemented into the stellar population synthesis codes starburst99 and lavalsb and used to compute synthetic spectra of star-forming galaxies. Model spectra for galaxies are presented and variations of the hot star photospheric and wind profiles are discussed. This poster summarizes the work of Robert et al. (2002).

Type
Part 4. Feedback from Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Dionne, D., Robert, C. 2002, in preparation.Google Scholar
Leitherer, C., Schaerer, D., Goldader, J. E., González Delgado, R.M., Robert, C., Kune, D.F., de Mello, D.F., Devost, D., Heckman, T.M. 1999, ApJS 123, 3.CrossRefGoogle Scholar
Lejeune, Th., Cuisinier, F., Buser, R. 1997, A&AS 125, 229.Google Scholar
Pellerin, A., Fullerton, A.W., Robert, C., Howk, C., Hutchings, J.B., Walborn, N.R., Bianchi, L., Crowther, P.A., Sonneborn, G. 2002, ApJS 143, 159.Google Scholar
Robert, C., Pellerin, A., Aloisi, A., Leitherer, C., Hoopes, C.G., Heckman, T.M. 2002, ApJS 144, 21.CrossRefGoogle Scholar
Schmidt-Kaler, Th. 1982, in: Schaifers, K. & Voigt, H.H. (eds.), Landolt-Börnstein IV: Numerical Data and Functional Relation Ships in Science and Technology (Springer-Verlag: Berlin), p. 1.Google Scholar
Schmutz, W., Leitherer, C., Gruenwald, R. 1992, PASP 104, 1164.Google Scholar
Tumlinson, J., Shull, J.M., Rachford, B.L., et al. 2002, ApJ 566, 857.Google Scholar
Walborn, N.R., Fullerton, A.W., Crowther, P.A., Bianchi, L.B., Hutchings, J.B., Pellerin, A., Sonneborn, G., Willis, A.J. 2002, ApJS 141, 443.Google Scholar