Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T07:31:00.015Z Has data issue: false hasContentIssue false

A Survey of QSO Emission Lines

Published online by Cambridge University Press:  19 July 2016

Beverley J. Wills*
Affiliation:
McDonald Observatory and Department of Astronomy, University of Texas, RLM 15.308, Austin, Texas 78712, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

“Standard” photoionization models of the broad line region (BLR) consist of numerous small optically thick clouds of identical ionization, density, temperature and optical depth, moving under the influence of the gravity and radiation field of a 107–8 M black hole and confined by a high temperature gas. Such models have provided a good description of observed line strengths and widths with only very minor modification. Although photoionization remains the most important heating mechanism in the BLR, new observations point to a wider range of physical conditions and to clues about the geometric and dynamic arrangement of the emitting gas. I want to highlight the observations that have led us to this view.

Type
III. Spectral Line Studies
Copyright
Copyright © Reidel 1986 

References

Antonucci, R. RJ. 1984, Ap. J., 278, 499.CrossRefGoogle Scholar
Antonucci, R.R.J., and Cohen, R. 1983, Ap. J., 271, 564.CrossRefGoogle Scholar
Boroson, T.A., Persson, S.E., and Oke, J.B. 1985, Ap. J., 293, 120.CrossRefGoogle Scholar
Bregman, J.N., Glassgold, A.E., Huggins, P.J., and Kinney, A.L. 1985, Ap. J., submitted.Google Scholar
Cohen, R. 1983, Ap. J., 273, 489.CrossRefGoogle Scholar
Davidson, K., and Netzer, H. 1979, Rev. Mod. Phys., 51, 715.CrossRefGoogle Scholar
de Robertis, M. 1985, Ap. J., 289, 67.CrossRefGoogle Scholar
de Robertis, M.M., and Osterbrock, D.E., 1984, Ap. J., 286, 171.CrossRefGoogle Scholar
Filippenko, A.V., and Halpern, J.P. 1984, Ap. J., 285, 458.CrossRefGoogle Scholar
Gaskell, C.M. 1982, Ap. J., 263, 79.CrossRefGoogle Scholar
Gaskell, C.M., Shields, G.A., and Wampler, E.J. 1981, Ap. J., 249, 443.CrossRefGoogle Scholar
Gaskell, C.M., and Sparke, L.S. 1986, preprint Google Scholar
Green, R.F., Pier, J.R., Schmidt, M., Estabrook, F.B., Lane, F.B., Wahlquist, H.D. 1980, Ap. J., 239, 483.CrossRefGoogle Scholar
Hartig, G.F., and Baldwin, J.A. 1986, Ap. J., in press.Google Scholar
Heckman, T.M., Illingworth, G.D., Miley, G.K., and van Breugel, W.J.M. 1985, Ap. J., 299, 41.CrossRefGoogle Scholar
Heckman, T.M., Miley, G.K., and Green, R.F. 1984, Ap. J., 281, 525.CrossRefGoogle Scholar
Joly, M., Collin Souffrin, S., Masnou, J.L., and Nottale, L. 1985, Astr. Ap., in press.Google Scholar
Kinney, A.L., Huggins, P.J., Bregman, J.N., and Glassgold, A.E. 1985, Ap. J., 291, 128.CrossRefGoogle Scholar
Lawrence, A., and Elvis, M. 1982, Ap. J., 256, 410.CrossRefGoogle Scholar
Mathews, W.G., and Wampler, E.J. 1985, Publ. A.S.P., in press.Google Scholar
Meyers, K.A., and Peterson, B.M. 1985, Ap. J., in press.Google Scholar
Miller, J.S., ed. 1985, Astrophysics of Active Galaxies and Quasi-Stellar Objects (based on the 1984 Santa Cruz Astrophysics Workshop held in honor of D.E. Osterbrock) (Mill Valley, California: University Science Books).Google Scholar
Netzer, H. 1985, Ap. J., 289, 451.CrossRefGoogle Scholar
Netzer, H., and Ferland, G.J. 1984, Publ. A.S.P., 96, 593.CrossRefGoogle Scholar
Osterbrock, D.E., and Shuder, J.M. 1982, Ap. J. Suppl. Ser., 49, 149.CrossRefGoogle Scholar
Pettini, M., and Boksenberg, A. 1985, Ap. J. (Letters), 294, L73.CrossRefGoogle Scholar
Rudy, R.J., Schmidt, G.D., Stockman, H.S., and Moore, R.L. 1983, Ap. J., 271, 59.CrossRefGoogle Scholar
Shuder, J.M. 1982, Ap. J., 259, 48.CrossRefGoogle Scholar
Shuder, J.M. 1984, Ap. J., 280, 491.CrossRefGoogle Scholar
Simkin, S.M. 1979, Ap. J., 234, 56.CrossRefGoogle Scholar
Spinrad, H., and Djorgovski, S. 1984, Ap. J. (Letters), 280, L9.CrossRefGoogle Scholar
Stephens, S.A., and Miller, J.S. 1985, Bull. A.A.S., 17, 1007.Google Scholar
Stockman, H.S., Angel, J.P.R., and Miley, G.K. 1979, Ap. J., 227, 55.CrossRefGoogle Scholar
Stockton, A. and MacKenty, J.W. 1983, Nature, 305, 678.CrossRefGoogle Scholar
Ulrich, M.H., et al. 1984, M.N.R.A.S., 206, 221.CrossRefGoogle Scholar
Uomoto, A.K. 1984, Ap. J., 284, 497.CrossRefGoogle Scholar
van Groningen, E., and de Bruyn, A.G. 1985, Astr. Ap., in preparation.Google Scholar
Vrtilek, J.M., and Carleton, N.P. 1985, Ap. J., 294, 106.CrossRefGoogle Scholar
Wampler, E.J. 1985, Ap. J., 296, 416.CrossRefGoogle Scholar
Wampler, E.J. 1986, preprint.Google Scholar
Whittle, M. 1985a, M.N.R.A.S., 213, 1.CrossRefGoogle Scholar
Whittle, M. 1985b, M.N.R.A.S., 213, 33.CrossRefGoogle Scholar
Whittle, M. 1985c, M.N.R.A.S., 216, 817.CrossRefGoogle Scholar
Wilkes, B.J. 1984, M.N.R.A.S., 207, 73.CrossRefGoogle Scholar
Wilkes, B.J. 1985, M.N.R.A.S., in press.Google Scholar
Wilkes, B.J., and Carswell, R.F. 1982, M.N.R.A.S., 201, 645.CrossRefGoogle Scholar
Wills, B.J., and Browne, I.W.A. 1986, Ap. J., March 1.Google Scholar
Wills, B.J., Netzer, H., and Wills, D. 1985, Ap. J., 288, 94.CrossRefGoogle Scholar