Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T15:46:10.687Z Has data issue: false hasContentIssue false

Supernovae, Gamma-Ray Bursts and Stellar Rotation

Published online by Cambridge University Press:  26 May 2016

S. E. Woosley
Affiliation:
Department of Astronomy and Astrophysics, UCSC, Santa Cruz CA 95064, USA
A. Heger
Affiliation:
Department of Astronomy and Astrophysics, Enrico Fermi Institute, The University of Chicago, 5640 S. Ellis Avenue, Chicago IL 60637, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the most dramatic possible consequences of stellar rotation is its influence on stellar death, particularly of massive stars. If the angular momentum of the iron core when it collapses is such as to produce a neutron star with a period of 5 ms or less, rotation will have important consequences for the supernova explosion mechanism. Still shorter periods, corresponding to a neutron star rotating at break up, are required for the progenitors of gamma-ray bursts (GRBs). Current stellar models, while providing an excess of angular momentum to pulsars, still fall short of what is needed to make GRBs. The possibility of slowing young neutron stars in ordinary supernovae by a combination of neutrino-powered winds and the propeller mechanism is discussed. The fall back of slowly moving ejecta during the first day of the supernova may be critical. GRBs, on the other hand, probably require stellar mergers for their production and perhaps less efficient mass loss and magnetic torques than estimated thus far.

Type
Session 5 Final Stages, Nucleosynthesis
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Alpar, M. A. 2001, ApJ 554, 1245 Google Scholar
Arras, P., Flanagan, E. E., Morsink, S. M., Schenk, A. K., Teukolsky, S. A. & Wasserman, I. 2003, ApJ 591, 1129 Google Scholar
Baade, W. & Zwicky, F. 1934, Pub National Acad Sci 20, 259 Google Scholar
Berger, E., Kulkarni, S. R. & Chevalier, R. A. 2002, ApJL 577, 5 CrossRefGoogle Scholar
Chevalier, R. A. 1989, ApJ 346, 847 CrossRefGoogle Scholar
Colgate, S. A. & White, R. H. 1966, ApJ 143, 626 Google Scholar
Duncan, R. C., Shapiro, S. L. & Wasserman, I. 1986, ApJ 309, 141 CrossRefGoogle Scholar
Frail, D. A., Kulkarni, S. R., Sari, R., Djorgovski, S. G., Bloom, J. S., Galama, T. J., Reichart, D. E., Berger, E., et al. 2001, ApJL 562, 55 Google Scholar
Fryer, C. L., Benz, W. & Herant, M. 1996, ApJ 460, 801 Google Scholar
Fryer, C. L., Woosley, S. E. & Heger, A. 2001, ApJ 550, 372 CrossRefGoogle Scholar
Fowler, W. A. & Hoyle, F. 1964, ApJS 9, 201 Google Scholar
Hamaan, W.-R. & Koesterke, L. 1998, A&A 335, 1003 Google Scholar
Heger, A., Langer, N. & Woosley, S. E. 2000, ApJ 528, 368 CrossRefGoogle Scholar
Heger, A., Woosley, S. E. & Spruit, H. 2003, ApJ in preparation Google Scholar
Hoyle, F. 1946, MNRAS 106, 343 CrossRefGoogle Scholar
Illarionov, A. F. & Sunyaev, R. A. 1979, A&A 39, 185 Google Scholar
Kaspi, V. & Helfand, D. 2002, in ASP Conf Series 271, ed. Slane, P. O. & Gaensler, B. M., San Francisco: ASP, p.3 Google Scholar
Kawabata, K. S., Jeffery, D. J., Iye, M., Ohyama, Y. & 27 others 2002, ApJL 580, 39 Google Scholar
Lattimer, J. M. & Prakash, M. 2001, ApJ 550, 426 Google Scholar
LeBlanc, J. M. & Wilson, J. R. 1970, ApJ 161, 541 Google Scholar
Li, Z.-Y. & Chevalier, R. A. 1999, ApJ 526, 716 CrossRefGoogle Scholar
Lindblom, L., Tohline, J. E. & Vallisneri, M. 2001, Phys. Rev. Lett, 86, 1152 Google Scholar
Lin, D. N. C., Woosley, S. E. & Bodenheimer, P. H. 1991, Nature 353, 827 Google Scholar
Maeder, A. & Meynet, G. 2000, A&A 361, 159 Google Scholar
MacFadyen, A., Woosley, S. E. 1999 ApJ 524, 262 Google Scholar
MacFadyen, A., Woosley, S. E. & Heger, A. 2001, ApJ 550, 410 CrossRefGoogle Scholar
Mestel, L. & Spruit, H. C. 1987, MNRAS 226, 57 Google Scholar
Meszaros, P. 2002, ARAA 40, 137 Google Scholar
Narayan, R., Piran, T., & Kumar, P. 2001, ApJ 557, 949 Google Scholar
Ostriker, J. P. & Gunn, J. E. 1971, ApJL 164, 95O CrossRefGoogle Scholar
Piro, L., Costa, E., Feroci, M., Frontera, F., Amati, L., dal Fiume, D., Antonelli, L. A., et al. 1999, ApJL 514, L73.CrossRefGoogle Scholar
Piro, L., Garmire, G., Garcia, M., Stratta, G., Costa, E., Feroci, M., Meszaros, P., Vietri, M., et al. 2000, Science 290, 955 Google Scholar
Qian, Y. Z. & Woosley, S. E. 1996, ApJ 471, 331 CrossRefGoogle Scholar
Shapiro, S. L. 2000, ApJ 544, 397 CrossRefGoogle Scholar
Spruit, H.C. 2002, A&A 381, 923 Google Scholar
Stern, B. E., Atteia, J.-L. & Hurley, K. 2002, ApJ 578, 304 Google Scholar
Thompson, T. 2003, preprint.Google Scholar
Thompson, T., Burrows, A. & Meyer, B. 2001, 562, 887 Google Scholar
Usov, V. 1992, Nature 357, 472 Google Scholar
Vietri, M. & Stella, L. 1998, ApJL 507, L45 Google Scholar
Vietri, M. & Stella, L. 1999, ApJL 527, L43 Google Scholar
Wheeler, J. C., Yi, I., Höflich, P. & Wang, L. 2000, ApJ 537, 810 Google Scholar
Wheeler, J. C., Meier, D. L. & Wilson, J. R. 2002, ApJ 568, 807 Google Scholar
Wellstein, S. & Langer, N. 1999, A&A 350, 148 Google Scholar
Woosley, S. E. 1993, ApJ 405, 273.Google Scholar