Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T15:43:16.552Z Has data issue: false hasContentIssue false

Structural and Kinematic Properties of Populations of the Andromeda Galaxy

Published online by Cambridge University Press:  14 August 2015

J. Einasto*
Affiliation:
W. Struve Astrophysical Observatory, Tartu, Estonia, U.S.S.R.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

New observational data (Spinrad, 1970; Van den Bergh, 1970; Rubin and Ford, 1970) are used to determine structural and kinematic parameters of the nucleus, the subsystem of globular clusters, and interstellar hydrogen in M31.

The mass derived for the nucleus from the new spectrophotometric data is in good agreement with the virial mass 6 × 108M. Model calculations show that there is no appreciable exchange of stars between the nucleus and the bulge. The rotation energy of the nucleus is only 7.5% of the total kinetic energy; the central density is 2 × 106M pc−3.

The mean radius of the subsystem of globular clusters is 4.5 kpc. This indicates that the subsystem of old stars is not identical with the spheroidal component of the galaxy, whose mean radius is only 1 kpc. Radial velocity dispersion of globular clusters is only half of that of the nucleus. This shows a strong dependence of the velocity dispersion on distance to the center of the galaxy and a bias in mass determination of a galaxy from velocity dispersion near the nucleus.

On the basis of data on rotation two mass distribution models have been found, differing from each other in respect of the mass concentration to the center. Spectrophotometric data on the stellar content of the bulge are urgently needed to solve the mass distribution problem.

Type
Research Article
Copyright
Copyright © Reidel 1972 

References

Arp, H.: 1965, Astrophys. J. 141, 43.Google Scholar
Babcock, H. W.: 1939, Lick Obs. Bull. No. 498.CrossRefGoogle Scholar
Bergh, S. van den: 1970, Astrophys. J. Suppl. No. 171.Google Scholar
Brandt, J. C. and Roosen, R. G.: 1969, Astrophys. J. Letters 156, L59.CrossRefGoogle Scholar
Einasto, J.: 1968, Tartu Publ. 36, 357.Google Scholar
Einasto, J.: 1969, Astrofizika 5, 137.Google Scholar
Einasto, J.: 1970, Tartu Teated No. 26, 1.Google Scholar
Einasto, J. and Rümmel, U.: 1970a, Astrofizika 6, 241.Google Scholar
Einasto, J. and Rümmel, U.: 1970b, in Becker, W. and Contopoulos, G., (eds.), ‘The Spiral Structure of our Galaxy’, IAU Symp. 38, 42.Google Scholar
Einasto, J. and Rümmel, U.: 1970c, in Becker, W. and Contopoulos, G., (eds.), ‘The Spiral Structure of Our Galaxy’, IAU Symp. 38, 51.Google Scholar
Haro, G.: 1950, Astron. J. 55, 66.Google Scholar
Johnson, H. M.: 1961, Astrophys. J. 133, 303.Google Scholar
Kinman, T. D.: 1965, Astrophys. J. 142, 1376.Google Scholar
Lallemand, A., Duchesne, M., and Walker, M. F.: 1960, Publ. Astron. Soc. Pacific 72, 76.CrossRefGoogle Scholar
Lynden-Bell, D.: 1969, Nature 223, 690.CrossRefGoogle Scholar
Minkowski, R.: 1962, in McVittie, G. G., (ed.), Problems of Extra-Galactic Research, Macmillan Co., N.Y., p. 112.Google Scholar
Redman, R. O. and Shirley, E. G.: 1937, Monthly Notices Roy. Astron. Soc. 97, 416.Google Scholar
Rubin, V. C. and Ford, W. K. Jr.: 1970, Astrophys. J. 159, 379.CrossRefGoogle Scholar
Sandage, A. R., Becklin, E. E., and Neugebauer, G.: 1969, Astrophys. J. 157, 55.Google Scholar
Sharov, A. S.: 1968, Astron. Zh. 45, 146.Google Scholar
Spinrad, H.: 1966, Publ. Astron. Soc. Pacific 78, 367.Google Scholar
Spinrad, H.: 1970 (private communication).Google Scholar
Veteŝnik, M.: 1962, Bull. Astron. Inst. Czech. 13, 180.Google Scholar