Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T16:42:13.343Z Has data issue: false hasContentIssue false

Stellar rotation and mixing

Published online by Cambridge University Press:  25 May 2016

Jean-Paul Zahn*
Affiliation:
Département d'Astrophysique Stellaire et Galactique, Observatoire de Paris, 92195 Meudon, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many observations indicate that some mixing occurs in stellar radiation zones: in massive stars, chemical elements resulting from nuclear burning in the core are detected at the surface, and in solar-type stars lithium is depleted with age. Since all mixing processes transport also momentum, the depletion of lithium should be linked with the loss of angular momentum through the stellar wind, and there are indeed signs of such a correlation in the behavior of tidally-locked binaries. Moreover, any transport process leaves its signature in the internal rotation profile, and this can help greatly in its identification. After reviewing the main transport mechanisms which have been considered so far, our present conclusion is that the uniform rotation observed in the radiative interior of the Sun is probably achieved by the action of internal waves emitted at the base of the convective envelope. It remains to be verified whether these waves contribute directly to the mixing, or whether they act only through the shaping of the rotation profile, which in turn determines the mixing through meridian circulation and turbulent diffusivity.

Type
Part II: Internal structure and rotation. Seismic inversions
Copyright
Copyright © Kluwer 1997 

References

Biermann, L. (1937) Astron. Nachr., 263, 185.Google Scholar
Brown, T.M, Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O. and Morrow, C.A. (1989) ApJ, 343, 526.Google Scholar
Busse, F.H. (1981) Geophys. Astrophys. Fluid Dynamics, 17, 215.CrossRefGoogle Scholar
Busse, F.H. (1982) ApJ, 259, 759.CrossRefGoogle Scholar
Chaboyer, B., Demarque, P. and Pinsonneault, M.H. (1995) ApJ, 441, 865.Google Scholar
Charbonneau, P. and MacGregor, K.B. (1993) ApJ, 417, 762.Google Scholar
Eddington, A.S. (1925) Observatory, 48, 78.Google Scholar
Endal, A.S. and Sofia, S. (1978) ApJ, 220, 279.Google Scholar
Ferraro, V.C.A. (1937) MNRAS, 97, 458.Google Scholar
García López, R.J. and Spruit, H.C. (1991) ApJ, 377, 268.Google Scholar
Geiss, J. and Reeves, H. (1972) A&A, 18, 126.Google Scholar
Giess, D.R. and Lambert, D.L. (1992) ApJ, 387, 673.Google Scholar
Goldreich, P. and Nicholson, P.D. (1989) ApJ, 342, 1079.Google Scholar
Herbig, G.H. (1965) ApJ, 141, 588.CrossRefGoogle Scholar
Herrero, A., Kudritzski, R.P., Vilchez, J.M., Kunze, D., Butler, K. and Haser, S. (1992) A&A, 261, 209.Google Scholar
Kumar, P. and Quataert, E.J. (1996) ApJ, (in press).Google Scholar
Lambert, D.L. (1976) ApJ, 210, 684.Google Scholar
Law, W.Y., Knobloch, E. and Spruit, H.C. (1984) Observational Tests of Stellar Evolution Theory (Maeder, A. & Renzini, A. ed.; Reidel).Google Scholar
Lyubimkov, L.S. (1984) Astrofisika, 20, 475.Google Scholar
Lyubimkov, L.S. (1991) Evolution of Stars: The Photo spheric Abundance Connection (Michaud, G. & Tutukov, A. ed.; Kluwer), 125.Google Scholar
Meynet, G. and Maeder, A. (1996) A&A, (in press).Google Scholar
Mestel, L. (1953) MNRAS, 113, 716.Google Scholar
Mestel, L. (1961) MNRAS, 122, 473.Google Scholar
Mestel, L. (1965) Stellar Structure, in Stars and Stellar Systems (Kuiper, G.P. & Middlehurst, B.M.; Univ. Chicago Press), 8, 465.Google Scholar
Mestel, L., Moss, D. and Taylor, R.J. (1988) MNRAS, 231, 873.Google Scholar
Pinsonneault, M.H., Kawaler, S.D., Sofia, S. and Demarque, P. (1989) ApJ, 338, 424.Google Scholar
Pinsonneault, M.H., Kawaler, S.D. and Demarque, P. (1990) ApJS, 74, 501.Google Scholar
Press, W.H. (1981) ApJ, 245, 286.Google Scholar
Roxburgh, I. (1963) MNRAS, 126, 157.CrossRefGoogle Scholar
Ryan, S.G. and Deliyannis, C.P. (1995) ApJ, 453, 819.Google Scholar
Schatzman, E. (1962) Ann. Astrophys., 25, 18.Google Scholar
Schatzman, E. (1969) A&A, 3, 331.Google Scholar
Schatzman, E. (1993) A&A, 279, 431.Google Scholar
Schatzman, E. (1996) J. Fluid Mech., 322, 355.Google Scholar
Skumanich, A. (1972) ApJ, 171, 563.Google Scholar
Soderblom, D.R., Burton, F.J., Balachandran, S., Stauffer, J.R., Duncan, D.K., Fedele, S.B. and Hudon, J.D. (1993) AJ, 106, 1059.Google Scholar
Spruit, H.C. (1987) The Internal Solar Angular Velocity (Durney, B.R. & Sofia, S. ed.; Reidel) 185.Google Scholar
Sweet, P.A. (1950) MNRAS, 110, 548.Google Scholar
Talon, S. and Zahn, J.-P. (1996) A&A, (in press).Google Scholar
Talon, S., Zahn, J.-P., Maeder, A. and Meynet, G. (1996) A&A, (in press).Google Scholar
Thompson, M.J., Toomre, J., Anderson, E.R., Antia, H.M., Berthomieu, G., Burtonclay, D., Chitre, S.M., Christensen-Dalsgaard, J., Corbard, T., DeRosa, M., Genovese, C.R., Gough, D.O., Haber, D.A., Harvey, J.W., Hill, F., Howe, R., Korzennik, S.G., Kosovichev, A.G., Leibacher, J.W., Pijpers, F.P., Provost, J., Rhodes, E.J. Jr., Schou, J., Sekii, T., Stark, P.B. and Wilson, P.R. (1996) Science, 272, 1300.Google Scholar
Thorburn, J.A., Hobbs, L.M., Deliyannis, C.P. and Pinsonneault, M.H. (1993) ApJ, 415, 150.Google Scholar
Vogt, H. (1925) Astron. Nachr., 223, 229.Google Scholar
Zahn, J.-P. (1974) Stellar Instability and Evolution (Ledoux, P., Noels, A. & Rogers, R.W. ed.; Reidel, Dordrecht), 185.Google Scholar
Zahn, J.-P. (1975) A&A, 41, 329.Google Scholar
Zahn, J.-P. (1990) Inside the Sun (Berthomieu, G. & Cribier, M. ed.; Kluwer) 425.Google Scholar
Zahn, J.-P. (1991) A&A, 252, 179.Google Scholar
Zahn, J.-P. (1992) A&A, 265, 115.Google Scholar
Zahn, J.-P. (1994) A&A 288, 829.Google Scholar
Zahn, J.-P., Talon, S. and Matias, J. (1996) A&A (in press).Google Scholar