Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T22:41:50.417Z Has data issue: false hasContentIssue false

Statistics of Multiple Stars: Some Clues to Formation Mechanisms

Published online by Cambridge University Press:  13 May 2016

Andrei Tokovinin*
Affiliation:
Sternberg Astronomical Institute, Universitetsky prosp. 13, 119899 Moscow, Russia, and European Southern Observatory, Karl-Schwarzschild Str. 2, Garching bei München, D-85748 Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The available information on the statistics of high multiplicity (3–6 components) systems is reviewed. The ratio of triple to binary systems is f3 ≍ 0.11, while fn ≍ 0.25 for higher n. Despite selection effects in the multiple star catalogue, the signatures of formation mechanisms are found in the distributions of period ratios and mass ratios. For example, the frequent occurrence of close sub-systems with periods less than 6 days can be explained by tidal dissipation in a 3-body system. In triple stars the angular momentum vectors of inner orbits are inclined to those of outer orbits by an average angle of 50°, hence the orbital spins are neither co-aligned nor completely random. Close binaries have a tendency to be found in higher-multiplicity systems, showing that close and wide binarity is statistically related. Future theoretical and observational studies are outlined.

Type
III. Main Sequence Binary Statistics
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Bate, M. R. 2000, MNRAS, 314, 33.CrossRefGoogle Scholar
Batten, A. H. 1973, Binary and multiple systems of stars (Oxford: Pergamon)Google Scholar
Batten, A. H., Fletcher, J. M., & MacCarthy, D. G. 1989, Publ. DAO, 17.Google Scholar
Delfosse, X., Forveille, T., Beuzit, J.-L. et al. 1999, A&A, 344, 897.Google Scholar
Duquennoy, A., & Mayor, M. 1986, in Instruments and research programs for small telescopes, ed. Hearnshaw, J. B. & Cottrell, P. L. (Dordrecht: Reidel), 59.Google Scholar
Duquennoy, A., & Mayor, M. 1991, A&A 248, 485.Google Scholar
Duquennoy, A., Mayor, M., Andersen, J., et al. 1992, A&A, 254, L13.Google Scholar
Holman, M., Touma, J., & Tremaine, S. 1997, Nature, 386, 254.CrossRefGoogle Scholar
Kiseleva, L. G., Eggleton, P. P., & Mikkola, S. 1998, MNRAS, 200, 292.CrossRefGoogle Scholar
Kozai, Y. 1962, AJ, 67, 391.Google Scholar
Mayor, M., & Mazeh, T. 1987, A&A, 171, 157.Google Scholar
Mazeh, T. 1990, AJ, 103, 1357.Google Scholar
Reipurth, B., Yu, K. C., Rodriguez, L., et al. 1999, A&A, 352, L83.Google Scholar
Shatsky, N. I. 2000, in Poster Proc. IAU Symp. 200 Birth and Evolution of Binary Stars, ed. Reipurth, B. & Zinnecker, H. (Potsdam: AIP), 175.Google Scholar
Tokovinin, A. A. 1993, PAZh, 19, 944.Google Scholar
Tokovinin, A. A. 1995, PAZh, 21, 286.Google Scholar
Tokovinin, A. A. 1997a, A&AS, 121, 71.Google Scholar
Tokovinin, A. A. 1997b, PAZh, 19, 834.Google Scholar
Tokovinin, A. A., Shatskii, N. I., & Magnitskii, A. K. 1998, PAZh, 20, 918.Google Scholar
Tokovinin, A. A. 1999, in ASP Conf. Ser., Vol. 185, Precise radial velocities, ed. Hearnshaw, J. B. & Scarfe, C. D. (San Francisco: ASP), 347.Google Scholar
Tokovinin, A. A. 2000, A&A, submitted.Google Scholar
Valtonen, M. J. 1998, A&A, 334, 169.Google Scholar
Zahn, J.-P., & Bouchet, L. 1989, A&A, 223, 112.Google Scholar